首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Two-dimensional stress waves in a general incompressible elastic solid are investigated. First, basic equations for simple waves and shock waves are presented for a general strain energy function. Then the characteristic wave speeds and the associated characteristic vectors are deduced. It is shown that there usually exist two simple waves and two shock waves. Finally, two examples are given for the case of plane strain deformation and antiplane strain deformation, respectively. It is proved that, in the case of plane strain deformation the oblique reflection problem of a plane shock is not solvable in general.  相似文献   

3.
By using the theory of small deformations superposed on large compressibility effects for nearly incompressible materials can be considered. A procedure suggested by Truesdell is outlined and used for the problems of straightening, stretching and shearing of an annular wedge and the telescopic shear of a cylindrical tube.  相似文献   

4.
Summary The thermodynamic theory of shock waves in incompressible elastic solids is reviewed, and the Hugoniot relation and the propagation condition for the shock speed are derived. Expanding the equations, for weak shock waves, in powers of the shock strength some well-known results of gasdynamics are generalized to the dynamics of shock waves in incompressible elastic media.
Zusammenfassung Die thermodynamische Theorie der Stoßwellen in inkompressiblen elastischen Körpern wird zusammenfassend dargestellt, die Hugoniot-Relation und die Ausbreitungsbedingung für die Stoßgeschwindigkeit werden abgeleitet. Durch Reihenentwicklung nach Potenzen der Stoßstärke werden für schwache Stoßwellen einige bekannte Ergebnisse der Gasdynamik für die Dynamik der Stoßwellen in inkompressiblen elastischen Medien verallgemeinert.


With 2 figures  相似文献   

5.
6.
7.
The mechanical response of some fiber-reinforced incompressible non-linearly elastic solids is examined under homogeneous deformation. In particular, the materials under consideration are neo-Hookean models augmented with a function that accounts for the existence of a unidirectional reinforcement. This function endows the material with its anisotropic character and is referred to as a reinforcing model. The nature of the anisotropy considered has a particular influence on the shear response of the material, in contrast to previous analyses in which the reinforcing model was taken to depend only on the stretch in the fiber direction.  相似文献   

8.
The buckling of a crack in an incompressible elastic solid subjected to a crack-parallel compression is studied by using a small-deformation-superposed-on-large-deformation analysis. It is found that for a general incompressible material there exists at least one and at most a finite number of buckling loads. For a Mooney material, a unique buckling load corresponding to a crack-parallel stretch ratio of 0.544 is found to exist.Supported by U.S. Army Research Office-Durham under Grant DAAG-29-76-G-0272.  相似文献   

9.
We consider an incompressible nonlinearly elastic material in which a matrix is reinforced by strong fibers, for example fibers of nylon or carbon aligned in one family of curves in a rubber matrix. Rather than adopting the constraint of fiber inextensibility as has been previously assumed in the literature, here we develop a theory of fiber-reinforced materials based on the less restrictive idea of limiting fiber extensibility. The motivation for such an approach is provided by recent research on limiting chain extensibility models for rubber. Thus the basic idea of the present paper is simple: we adapt the limiting chain extensibility concept to limiting fiber extensibility so that the usual inextensibility constraint traditionally used is replaced by a unilateral constraint. We use a strain-energy density composed with two terms, the first being associated with the isotropic matrix or base material and the second reflecting the transversely isotropic character of the material due to the uniaxial reinforcement introduced by the fibers. We consider a base neo-Hookean model plus a special term that takes into account the limiting extensibility in the fiber direction. Thus our model introduces an additional parameter, namely that associated with limiting extensibility in the fiber direction, over previously investigated models. The aim of this paper is to investigate the mathematical and mechanical feasibility of this new model and to examine the role played by the extensibility parameter. We examine the response of the proposed models in some basic homogeneous deformations and compare this response to those of standard models for fiber reinforced rubber materials. The role of the strain-stiffening of the fibers in the new models is examined. The enhanced stability of the new models is then illustrated by investigation of cavitation instabilities. One of the motivations for the work is to apply the model to the biomechanics of soft tissues and the potential merits of the proposed models for this purpose are briefly discussed.  相似文献   

10.
11.
In this paper we study the problem of rectilinear shear of a slab of transversely isotropic incompressible non-linearly elastic material. In particular, the material under consideration is a base neo-Hookean model augmented with a function that accounts for the existence of a unidirectional reinforcement. The slab is of infinite length in two dimensions and finite thickness in the other one and is clamped to two rigid plates. Closed form analytic solutions are found for this problem. It is shown that, depending on the reinforcement strength and the fiber orientation in the undeformed configuration, weak solutions, i.e. solutions for which the smoothness required by the differential equations is relaxed, are to be expected. These solutions give rise to fiber kinking. It is shown that: (i) both sides of the kink involve fiber contraction; (ii) a suitable intermediate deformation between the two conjoined kink deformation states is non-elliptic.  相似文献   

12.
The mechanical behavior of an incompressible neo-Hookean material, directionally reinforced by neo-Hookean fibers, is examined under homogeneous deformations. A composite model for this transversely isotropic material is developed based on a multiplicative decomposition of the deformation gradient which considers interaction between the fiber and the matrix. The so-called standard reinforcing model exhibits non-monotonic behavior in compression. The present composites-based approach leads to a modification of the standard reinforcing model in which monotonic behavior in compression is observed. This stems from the micromechanical basis of the model in which the fiber is treated as a neo-Hookean material. The conditions for loss of monotonicity and positivity in the stress-shear behavior in off-axis simple 2D shear are also obtained.  相似文献   

13.
In this paper we focus on cavity formation in fiber-reinforced incompressible non-linearly elastic solids. In particular, the material under consideration is a base neo-Hookean augmented by a function that accounts for the existence of a unidirectional reinforcing. This function characterizes the anisotropy of the material and is referred to as reinforcing model. Previous works has dealt with the analysis of a specific reinforcing model, the so called standard reinforcing model, that is a quadratic function that depends only on the fiber reinforcement stretch. Here, two different reinforcing models are examined: a power law that depends only on the fiber stretch and a quadratic function that depends simultaneously on the fiber stretch and fiber shearing. Closed form analytic solutions are found for the classical problem of cavity formation in a sphere under uniform radial tensile dead-load with the fiber in the radial direction. It is shown that for some of the new reinforcing models under study the cavitation instabilities obtained in previous works for the standard reinforcing model are not possible.  相似文献   

14.
A closed-form asymptotic solution is provided for velocity fields and the nominal stress rates near the tip of a stationary crack in a homogeneously pre-stressed configuration of a nonlinear elastic, incompressible material. In particular, a biaxial pre-stress is assumed with stress axes parallel and orthogonal to the crack faces. Two boundary conditions are considered on the crack faces, namely a constant pressure or a constant dead loading, both preserving an homogeneous ground state. Starting from this configuration, small superimposed Mode I or Mode II deformations are solved, in the framework of Biot's incremental theory of elasticity. In this way a definition of an incremental stress intensity factor is introduced, slightly different for pressure or dead loading conditions on crack faces. Specific examples are finally developed for various hyperelastic materials, including the J2-deformation theory of plasticity. The presence of pre-stress is shown to strongly influence the angular variation of the asymptotic crack-tip fields, even if the nominal stress rate displays a square root singularity as in the infinitesimal theory. Relationships between the solution with shear band formation at the crack tip and instability of the crack surfaces are given in evidence.  相似文献   

15.
16.
Non-homogeneous conformal deformations are shown to be possible in an isotropic elastic material in the absence of body forces if and only if the material satisfies a certain condition which renders it incapable of obeying the classical pressure-compression inequality. The undistorted states of materials in this class (which are obtained by subjecting an undistorted state called reference configuration to all possible conformal deformations) are shown to be at best neutrally stable when subject to hydrostatic loading everywhere on the boundary.  相似文献   

17.
Agmon's condition arises as a necessary condition at the boundary for minimizers in compressible and incompressible elasticity. It is commonly formulated as a statement concerning the solution set of a family of ODEs with constant coefficients. As such, it is algebraic “in principle”.In both the compressible and incompressible cases, Agmon's condition may be recast in a more overtly algebraic form, namely the requirement that a certain family of algebraic Riccati equations (parametrized over the tangent plane) should possess positive solutions. In order to reduce Agmon's condition to a fully explicit set of inequalities involving the components of the incremental elasticity tensor, one must be able to solve the algebraic Riccati equation explicitly. Known situations where this can be done tend to involve highly symmetric states of isotropic materials. It is therefore noteworthy that Agmon's condition may be rendered explicit for any boundary-point of an arbitrarily deformed incompressible neo-Hookean body.  相似文献   

18.
Loss of ellipticity and associated failure in fiber-reinforced non-linearly elastic solids is examined for uniaxial plane deformations. We consider separately fiber reinforcement that either endows the material with additional stiffness only in the fiber direction or introduces additional stiffness under shear deformations. In the first case it is shown that loss of ellipticity under tensile loading in the fiber direction corresponds to a turning point of the nominal stress and requires concavity of the Cauchy stress–stretch curve. For the second example loss of ellipticity occurs after the nominal stress maximum and prior to a turning point of the Cauchy stress.  相似文献   

19.
Sholmo Breuer 《Meccanica》1973,8(2):102-104
Summary Four minimum principles are established, governing the quasi-static deformations of linear, isotropic, incompressible viscoelastic solids.
Sommario Si stabiliscono quattro principi di minimo che governano le deformazioni quasi statiche di solidi viscoelastici, lineari, isotropici e incompressibili.
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号