首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
生帝  胡宇达 《力学季刊》2019,40(4):753-761
研究在外激励力与磁场作用下轴向运动铁磁梁的磁弹性非线性主共振问题.基于弹性理论和电磁理论,给出梁的动能和弹性势能表达式,根据哈密顿原理,推导出磁场中轴向运动铁磁梁的磁弹性双向耦合非线性振动方程.通过伽辽金积分法进行离散,得出两端简支边界条件下铁磁梁磁弹性非线性强迫振动方程.应用多尺度法对方程进行求解,得出幅频响应方程.最后通过算例,给出铁磁梁的幅频特性曲线、振幅-磁感应强度和振幅-外激励力曲线并进行分析.结果显示,在幅频响应曲线中铁磁梁的轴向运动速度、外激励力、轴向拉力越大,共振振幅越大;而磁感应强度越大,振幅越小.  相似文献   

2.
梁的轴向运动会诱发其产生横向振动并可能导致屈曲失稳,对结构的安全性和可靠性产生重大的影响。本文重点研究了横向载荷作用下轴向运动梁的屈曲失稳及横向非线性振动特性。基于Hamilton变分原理,建立了横向载荷作用下轴向运动梁的动力学方程,获得了梁的后屈曲构型。使用截断Galerkin法,将控制方程改写成Duffing方程的形式。用同伦分析方法确定载荷作用下轴向运动梁的非线性受迫振动的封闭形式的表达式。结果表明,后屈曲构型对轴向速度和初始轴向应力有明显的依赖性。通过同伦分析法得出非线性基频的显式表达式,获得了初始轴向力会影响非线性频率随初始振幅和轴向速度的线性关系。另外,轴向外激励的方向也会改变系统固有频率。  相似文献   

3.
This paper investigates the nonlinear flexural dynamic behavior of a clamped Timoshenko beam made of functionally graded materials (FGMs) with an open edge crack under an axial parametric excitation which is a combination of a static compressive force and a harmonic excitation force. Theoretical formulations are based on Timoshenko shear deformable beam theory, von Karman type geometric nonlinearity, and rotational spring model. Hamilton’s principle is used to derive the nonlinear partial differential equations which are transformed into nonlinear ordinary differential equation by using the Least Squares method and Galerkin technique. The nonlinear natural frequencies, steady state response, and excitation frequency-amplitude response curves are obtained by employing the Runge–Kutta method and multiple scale method, respectively. A parametric study is conducted to study the effects of material property distribution, crack depth, crack location, excitation frequency, and slenderness ratio on the nonlinear dynamic characteristics of parametrically excited, cracked FGM Timoshenko beams.  相似文献   

4.
We investigate the nonlinear response of a clamped-clamped buckled beamto a primary-resonance excitation of its first vibration mode. The beamis subjected to an axial force beyond the critical load of the firstbuckling mode and a transverse harmonic excitation. We solve thenonlinear buckling problem to determine the buckled configurations as afunction of the applied axial load. A Galerkin approximation is used todiscretize the nonlinear partial-differential equation governing themotion of the beam about its buckled configuration and obtain a set ofnonlinearly coupled ordinary-differential equations governing the timeevolution of the response. Single- and multi-mode Galerkinapproximations are used. We found out that using a single-modeapproximation leads to quantitative and qualitative errors in the staticand dynamic behaviors. To investigate the global dynamics, we use ashooting method to integrate the discretized equations and obtainperiodic orbits. The stability and bifurcations of the periodic orbitsare investigated using Floquet theory. The obtained theoretical resultsare in good qualitative agreement with the experimental results obtainedby Kreider and Nayfeh (Nonlinear Dynamics 15, 1998, 155–177.  相似文献   

5.
The moment Lyapunov exponents and the Lyapunov exponent of a two-dimensional system under bounded noise excitation are studied in this paper. The method regular perturbation is applied to obtain the small noise expansion of the pth moment Lyapunov exponent and the Lyapunov exponent. The results are applied to the study of the almost-sure and moment stability of the stationary solutions of the elastic beam subjected to the stochastic axial load. The boundaries of the almost-sure and moment stability of the elastic beam as the function of the damping coefficient and characteristics of the stochastic force are obtained.  相似文献   

6.
The nonlinear equations of motion of planar bending vibration of an inextensible viscoelastic carbon nanotube (CNT)-reinforced cantilevered beam are derived. The viscoelastic model in this analysis is taken to be the Kelvin–Voigt model. The Hamilton principle is employed to derive the nonlinear equations of motion of the cantilever beam vibrations. The nonlinear part of the equations of motion consists of cubic nonlinearity in inertia, damping, and stiffness terms. In order to study the response of the system, the method of multiple scales is applied to the nonlinear equations of motion. The solution of the equations of motion is derived for the case of primary resonance, considering that the beam is vibrating due to a direct excitation. Using the properties of a CNT-reinforced composite beam prototype, the results for the vibrations of the system are theoretically and experimentally obtained and compared.  相似文献   

7.
考虑几何非线性、阻尼非线性和梁的轴向不可伸长条件,利用Hamilton变分原理,建立了参数激励和直接激励下压电俘能器的非线性力电耦合的运动微分方程;利用Galerkin法,将所建立的动力学偏微分方程降阶为力电耦合的Mathieu-Duffing型方程;采用多尺度法获得了梁的位移和输出电压的解析表达式,给出了解的稳定性条件;利用解析表达式研究了单独参数激励以及参数激励和直接激励共同作用下阻尼系数对压电俘能器性能的影响。结果表明,在参数激励情况下,线性阻尼会显著影响超临界分岔点的位置,非线性二次阻尼不会影响超临界分岔点的位置。参数激励和直接激励的结合可以作为提升压电能量俘获器性能的解决方案。  相似文献   

8.
Dynamics of three-dimensional beams undergoing large overall motion   总被引:3,自引:0,他引:3  
In the previous linear formulation of flexible multibody system, the neglect of stiffening terms may cause significant error in case of high rotating speed. In this paper, a geometric nonlinear formulation of three-dimensional beams is proposed based on virtual power principle. Frequency results of a rotating spatial beam using the present nonlinear model are compared with those using the linear model without stiffening. An influence ratio, which is related to non-dimensional axial base acceleration and lateral angular velocity, is put forward to clarify the limit of the linear formulation. It is shown that the relative frequency error is closely related to the influence ratio. Finally, simulation of a flexible spatial manipulator is carried out to verify the effectiveness of the criterion.  相似文献   

9.
Linear vibration absorbers are a valuable tool used to suppressvibrations due to harmonic excitation in structural systems. Whilelimited evaluation of the performance of nonlinear vibrationabsorbers for nonlinear structures exists in the literature forsingle mode structures, none exists for multi-mode structures.Consequently, nonlinear multiple-degrees-of-freedom structures areevaluated. The theory of nonlinear normal modes is extended toinclude consideration of modal damping, excitation and smalllinear coupling, allowing estimation of vibration absorberperformance. The dynamics of the N +1-degrees-of-freedom system areshown to reduce to those of a two-degrees-of-freedom system on afour-dimensional nonlinear modal manifold, thereby simplifying theanalysis. Quantitative agreement is shown to require a higher-order model which is recommended for future investigation.  相似文献   

10.
胡宇达  张晓宇 《应用力学学报》2020,(2):674-681,I0015
研究了轴向运动正交各向异性条形薄板在线载荷作用下的超谐波共振问题。通过哈密顿原理导出了几何非线性下正交各向异性条形板的非线性振动方程。运用伽辽金积分法,推得了关于时间变量的量纲归一化非线性振动微分方程组。应用多尺度法求解三阶超谐波共振问题,得到了稳态运动下一阶、二阶、三阶共振形式的共振幅值响应方程。利用Liapunov方法推得不同共振形式稳态解的稳定性判据,并据此分析不同参数对系统稳定性的影响。绘制了振幅特性变化曲线图和与之对应的激发共振多解临界点曲线图,分析系统参数对共振的影响,并预测系统进入非线性共振区域的临界条件。得出激励在特定位置区间时可激发系统的超谐波共振,随着激励幅值的增加,上稳定解支减小,下稳定解支增加,且一阶模态振幅大于二阶、三阶振幅。  相似文献   

11.
Systems constituted by impacting beams and rods of non-negligible mass are often encountered in many applications of engineering practice. The impact between two rigid bodies is an intrinsically indeterminate problem due to the arbitrariness of the velocities after the instantaneous impact and implicates an infinite value of the contact force. The arbitrariness of after-impact velocities is solved by releasing the impenetrability condition as an internal constraint of the bodies and by allowing for elastic deformations at contact during an impact of finite duration. In this paper, the latter goal is achieved by interposing a concentrate spring between a beam and a rod at their contact point, simulating the deformability of impacting bodies at the interaction zones. A reliable and convenient method for determining impact forces is also presented. An example of engineering interest is carried out: a flexible beam that impacts on an axially deformable strut. The solution of motion under a harmonic excitation of the beam built-in base is found in terms of transverse and axial displacements of the beam and rod, respectively, by superimposition of a finite number of modal contributions. Numerical investigations are performed in order to examine the influence of the rigidity of the contact spring and of the ratio between the first natural frequencies of the beam and the rod, respectively, on the system response, namely impact velocity, maximum displacement, spring stretching and contact force. Impact velocity diagrams, nonlinear resonance curves and phase portraits are presented to determine regions of periodic motion with impacts and the appearance of chaotic solutions, and parameter ranges where the functionality of the non-structural element is at risk.  相似文献   

12.
A critical problem in designing large structures for space applications, such as space stations and parabolic antennas, is the limitation of testing these structures and their substructures on earth. These structures will exhibit very high flexibilities due to the small loads expected to be encountered in orbit. It has been reported in the literature that the gravitational sag effect under dead weight is of extreme importance during ground tests of space-station structural components [1–4]. An investigation of a horizontal, pinned-pinned beam with complete axial restraint and undergoing large-amplitude oscillations about the statically deflected position is presented here. This paper presents a solution for the frequency-amplitude relationship of the nonlinear free oscillations of a horizontal, immovable-end beam under the influence of gravity.The governing equation of motion used for the analysis is the Bernoulli-Euler type modified to include the effects of mid-plane stretching and gravity. Boundary conditions are simply supported such that at both ends there is no bending moment and no transverse and axial displacements. These boundary conditions give rise to an initial tension in the statically deflected shape. The displacement function consists of an assumed space mode using a simple sine function and unknown amplitude which is a function of time. This assumption provides for satisfaction of the boundary conditions and leads to an ordinary differential equation which is nonlinear, containing both quadratic and cubic functions of the amplitude. The perturbation method of multiple scales is used to provide an approximate solution for the fundamental frequency-amplitude relationship.Since the beam is initially deflected the small-amplitude fundamental natural frequency always increases relative to the free vibration situation provided in zero gravity. The nonlinear equation provides for interactions between frequency and amplitude in that both hardening and softening effects arise. The coefficient of the quadratic term in the nonlinear equation arises from the static (dead load) portion of the deflection. This quadratic term, depending upon its magnitude, introduces a softening effect that overcomes the hardening term (due to initial axial tension developed by deflection) for large slenderness ratios.For very large slender, immovable-end beams, the fundamental natural frequency is greater than that of beams without axial constraints undergoing small amplitude oscillations. This phenomenon is attributed to the stiffening effect of the statically-induced axial tension. However, the stiffening effect of axial tension in beams with slenderness ratios greater than approximately 392 undergoing large-amplitude symmetric-mode oscillations is overpowered by the presence of gravitational loading.Nomenclature A amplitude of the first harmonic - A 1 cross-sectional area of beam - a(t) vibratory amplitude - E Young's modulus - g acceleration due to gravity - g 1,g 2,g 3 constants defined in equations (8) - I area moment of inertia of cross-section - L length of beam - N axial tension force induced by gravitational loading  相似文献   

13.
An analytical–numerical method involving a small number of generalized coordinates is presented for the analysis of the nonlinear vibration and dynamic stability behaviour of imperfect anisotropic cylindrical shells. Donnell-type governing equations are used and classical lamination theory is employed. The assumed deflection modes approximately satisfy simply supported boundary conditions. The axisymmetric mode satisfying a relevant coupling condition with the linear, asymmetric mode is included in the assumed deflection function. The shell is statically loaded by axial compression, radial pressure and torsion. A two-mode imperfection model, consisting of an axisymmetric and an asymmetric mode, is used. The static-state response is assumed to be affine to the given imperfection. In order to find approximate solutions for the dynamic-state equations, Hamiltons principle is applied to derive a set of modal amplitude equations. The dynamic response is obtained via numerical time-integration of the set of nonlinear ordinary differential equations. The nonlinear behaviour under axial parametric excitation and the dynamic buckling under axial step loading of specific imperfect isotropic and anisotropic shells are simulated using this approach. Characteristic results are discussed. The softening behaviour of shells under parametric excitation and the decrease of the buckling load under step loading, as compared with the static case, are illustrated.  相似文献   

14.
Analytical results are presented on chaotic vibrations of a post-buckled L-shaped beam with an axial constraint. The L-shaped beam is composed of two beams which are a horizontal beam and a vertical beam. The two beams are firmly connected with a right angle at each end. The beams joint with the right angle is attached to a linear spring. The other ends are firmly clamped for displacement. The L-shaped beam is compressed horizontally via the spring at the beams joint. The L-shaped beam deforms to a post-buckled configuration. Boundary conditions are required with geometrical continuity of displacements and dynamical equilibrium with axial force, bending moment, and share force, respectively. In the analysis, the mode shape function proposed by the senior author is introduced. The coefficients of the mode shape function are fixed to satisfy boundary conditions of displacements and linearized equilibrium conditions of force and moment. Assuming responses of the beam with the sum of the mode shape function, then applying the modified Galerkin procedure to the governing equations, a set of nonlinear ordinary differential equations is obtained in a multiple-degree-of-freedom system. Nonlinear responses of the beam are calculated under periodic lateral acceleration. Nonlinear frequency response curves are computed with the harmonic balance method in a wide range of excitation frequency. Chaotic vibrations are obtained with the numerical integration in a specific frequency region. The chaotic responses are investigated with the Fourier spectra, the Poincaré projections, the maximum Lyapunov exponents and the Lyapunov dimension. Applying the procedure of the proper orthogonal decomposition to the chaotic responses, contribution of vibration modes to the chaotic responses is confirmed. The following results have been found: The chaotic responses are generated with the ultra-subharmonic resonant response of the two-third order corresponding to the lowest mode of vibration. The Lyapunov dimension shows that three modes of vibration contribute to the chaotic vibrations predominantly. The results of proper orthogonal decomposition confirm that the three modes contribute to the chaos, which are the first, second, and third modes of vibration. Moreover, the results of the proper orthogonal decomposition are evaluated with velocity which is equivalent to kinetic energy. Higher modes of vibration show larger contribution to the chaotic responses, even though the first mode of vibration has the largest contribution ratio.  相似文献   

15.
In this paper, we show that oscillations of an Euler–Bernoulli beam with a small rigidity and with a time varying mass can lead to a resonance, which involves a large number of modes. This effect can induce a stability loss. The corresponding equations are complicated, in particular, in the nonlinear case with an external excitation. To analyze these equations, a new asymptotic method (which has a variational nature and is based on energy estimates) was suggested and applied. This method allows us to investigate the stability problem and to find how the system stability depends on the beam parameters. The number of modes involved in a resonance can be computed with the help of suggested explicit formulas. The effect of modal interactions for a problem with an external excitation term \(\rho _0 u_\mathrm{t} - \rho _1 u_\mathrm{t}^3\) in the equation describing the beam displacement, where \(\rho _0\) and \(\rho _1\) are some positive coefficients, was studied. This type of cubic nonlinearity can model a wind force acting on the beam.  相似文献   

16.
This paper develops a coupled dynamics model for a linear induction motor (LIM) vehicle and a subway track to investigate the influence of polygonal wheels of the vehicle on the dynamic behavior of the system. In the model, the vehicle is modeled as a multi-body system with 35 degrees of freedom. A Timoshenko beam is used to model the rails which are discretely supported by sleepers. The sleepers are modeled as rigid bodies with their vertical, lateral, and rolling motions being considered. In order to simulate the vehicle running along the track, a moving sleeper support model is introduced to simulate the excitation by the discrete sleeper supporters, in which the sleepers are assumed to move backward at a constant speed that is the same as the train speed. The Hertzian contact theory and the Shen- Hedrick-Elkins’ model are utilized to deal with the normal dynamic forces and the tangential forces between wheels and rails, respectively. In order to better characterize the linear metro system (LMS), Euler beam theory based on modal superposition method is used to model LIM and RP. The vertical electric magnetic force and the lateral restoring force between the LIM and RP are also taken into consideration. The former has gap-varying nonlinear characteristics, whilst the latter is considered as a constant restoring force of 1 kN. The numerical analysis considers the effect of the excitation due to polygonal wheels on the dynamic behavior of the system at different wear stages, in which the used data regarding the polygonal wear on the wheel tread are directly measured at the subway site.  相似文献   

17.
为研究间隙碰撞对系统动力学响应的影响,以理想简支梁的振型函数为Rayleigh--Ritz基函数建立了单侧约束简支梁系统的非线性离散动力学方程组,应用数值方法研究了系统在基础谐波激励下的动力学响应特征及其对共振频率线性等效方法适用性的影响。研究表明:非线性动力学系统间隙产生的局部碰撞,使得系统振动能量在系统各阶模态之间转移,使得线性等效方法失效;即使进行非线性分析,也需要考虑系统固有频率远大于激励频段上限的模态。  相似文献   

18.
Experiments on a beam-rigid body structure repetitively impacting a rod   总被引:3,自引:0,他引:3  
This paper investigates the experimental dynamics of a beam structure that supports an attached rigid body and that can impact a comparatively compliant base structure. The problem area is motivated by impact phenomena that are observed in certain structures internal to nuclear reactors. The assembly is subjected to base excitation at specified frequency and acceleration, and the resulting displacement and velocity time histories are recorded and used to obtain spectra, phase diagrams, and Poincaré sections. The measurements validate simulation results obtained by using a constraint and modal mapping method based on the two sets of modes when the structure is in-contact, and when it is not-in-contact. Generalized coordinates are mapped across the impact discontinuities in the modal representation. The forced response simulation predicts the test specimen’s response over a range of excitation frequencies. The specimens are fabricated as single integral structures from acrylnitrile butadene styrene plastic through rapid prototyping technology in order to eliminate the undesirable dissipation and flexibility arising from joints and connections. The experimental system can exhibit complex response characteristics, and the influences on complexity of deadband clearance and of asymmetry in the point of impact are examined in the experiments.  相似文献   

19.
考虑一端具有干摩擦的屈曲梁在轴向激励下的非线性振动系统,利用Floquet理论和谐波平衡法,研究了系统中初始屈曲度、阻尼、频率、激励振幅等各种物理参数对1/2业谐共振情况下倍周期分叉的影响,其规律与以往的数值模拟结果具有很好的一致性。  相似文献   

20.
This paper develops geometric nonlinear hybrid formulation for flexible multibody system with large deformation considering thermal efect. Diferent from the conventional formulation, the heat flux is the function of the rotational angle and the elastic deformation, therefore, the coupling among the temperature, the large overall motion and the elastic deformation should be taken into account. Firstly,based on nonlinear strain–displacement relationship, variational dynamic equations and heat conduction equations for a flexible beam are derived by using virtual work approach,and then, Lagrange dynamics equations and heat conduction equations of the first kind of the flexible multibody system are obtained by leading into the vectors of Lagrange multiplier associated with kinematic and temperature constraint equations. This formulation is used to simulate the thermal included hub-beam system. Comparison of the response between the coupled system and the uncoupled system has revealed the thermal chattering phenomenon. Then, the key parameters for stability, including the moment of inertia of the central body, the incident angle, the damping ratio and the response time ratio, are analyzed. This formulation is also used to simulate a three-link system applied with heat flux. Comparison of the results obtained by the proposed formulation with those obtained by the approximate nonlinear model and the linear model shows the significance of considering all the nonlinear terms in the strain in case of large deformation. At last, applicability of the approximate nonlinear model and the linear model are clarified in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号