首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
The generation of pure quadrupolar stimulated-echo spectra is successfully demonstrated for the spin- probe 9Be in a single crystal of triglycine fluoberyllate. This solid exhibits a paraelectric-to-ferroelectric phase transition. From experiments carried out for various mixing times no indications for a slow soft mode could be detected in this crystal. Then ion conducting lithium metal phosphates were studied using 7Li, another spin- probe which allows for a non-selective excitation of the entire NMR spectrum. In the indium and the scandium phosphates ultra-slow Li hopping processes could be detected directly via the stimulated-echo technique in a time range of up to four orders of magnitude. Due to the relatively large gyromagnetic ratio and thus strong dipolar interactions of 7Li no pure quadrupolar echoes could be generated. However, from a variation of the evolution times the quadrupolar effects could be separated from the dipolar ones. Finally, the differences in the ion hopping times of lithium indium phosphate and of lithium scandium phosphate are briefly discussed.  相似文献   

2.
The ion dynamics in a lithium aluminosilicate glass ceramic was studied using stimulated-echo 7Li-NMR. For temperatures 300 K相似文献   

3.
In anticipation of using fluctuations in the nuclear dipolar and quadrupolar interaction as a probe of lithium ion motion in lithium borate glasses, the static values of these interactions were measured using a variety of echo techniques. The static quadrupolar echo spectrum of 7Li and a calculation of the dipolar interaction in crystalline Li2B4O7 (same chemical composition as the glass under study) were used to estimate the strength of the two interactions. These indicate that the dipolar and quadrupolar interactions for 6Li will be of similar size and the dipolar interaction will be dominated by the unlike spin interaction between the 6Li and the 10B, 11B spins. An appropriate theoretical model is proposed and explicit expressions for the echo amplitude are calculated in terms of the dipolar and quadrupolar second moments. This single spin model takes into account the quadrupolar interaction but treats the dipolar interaction as an effective magnetic field. Experimental results are presented which show the essential validity of the model and measurements lead to reasonable values for the dipolar and quadrupolar second moments. The relative merits of the various echo techniques are discussed.  相似文献   

4.
In anticipation of using fluctuations in the nuclear dipolar and quadrupolar interaction as a probe of lithium ion motion in lithium borate glasses, the static values of these interactions were measured using a variety of echo techniques. The static quadrupolar echo spectrum of 7Li and a calculation of the dipolar interaction in crystalline Li2B4O7 (same chemical composition as the glass under study) were used to estimate the strength of the two interactions. These indicate that the dipolar and quadrupolar interactions for 6Li will be of similar size and the dipolar interaction will be dominated by the unlike spin interaction between the 6Li and the 10B, 11B spins. An appropriate theoretical model is proposed and explicit expressions for the echo amplitude are calculated in terms of the dipolar and quadrupolar second moments. This single spin model takes into account the quadrupolar interaction but treats the dipolar interaction as an effective magnetic field. Experimental results are presented which show the essential validity of the model and measurements lead to reasonable values for the dipolar and quadrupolar second moments. The relative merits of the various echo techniques are discussed.  相似文献   

5.
Stimulated-echo spectroscopy has recently been applied to study the ultra-slow dynamics of nuclear spin-3/2 probes such as 7Li and 9Be in solids. Apart from the dominant first-order quadrupolar interaction in the present article also the impact of the homonuclear dipolar interactions is considered in a simple way: the time evolution of a dipole coupled pair of spins with I = 3/2 is calculated in an approximation, which takes into account that the satellite transitions usually do not overlap. Explicit analytical expressions describing various aspects of a coupled quadrupolar pair subjected to a Jeener-Broekaert pulse sequence are derived. Extensions to larger spin systems are also briefly discussed. These results are compared with experimental data on a single-crystalline Li ion conductor.  相似文献   

6.
Stimulated-echo spectroscopy has recently been applied to study the ultra-slow dynamics of nuclear spin-3/2 probes such as 7Li and 9Be in solids. Apart from the dominant first-order quadrupolar interaction in the present article also the impact of the homonuclear dipolar interactions is considered in a simple way: the time evolution of a dipole coupled pair of spins with I = 3/2 is calculated in an approximation, which takes into account that the satellite transitions usually do not overlap. Explicit analytical expressions describing various aspects of a coupled quadrupolar pair subjected to a Jeener-Broekaert pulse sequence are derived. Extensions to larger spin systems are also briefly discussed. These results are compared with experimental data on a single-crystalline Li ion conductor.  相似文献   

7.
Using (7)Li NMR line-shape analysis, spin-lattice relaxation measurements and stimulated-echo spectroscopy, we investigate the lithium ionic jump motion in the garnet Li(5)La(3)Nb(2)O(12). Results for two samples are compared, which were annealed at 850( composite function)C (GR-850) and at 900( composite function)C (GR-900), respectively. All (7)Li NMR data consistently show that two lithium species with distinguishable dynamical behaviors coexist in each of the samples. While the less mobile species is the majority component in GR-850, the more mobile species is the majority component in GR-900. (7)Li NMR stimulated-echo spectroscopy provides straightforward access to the correlation functions describing the jumps of the respective majority component in both samples. From the temperature-dependent correlation times, we obtain activation energies of 56 and 32kJmol(-1) for GR-850 and GR-900, respectively. For both samples, the correlation functions substantially deviate from simple exponential behavior, indicating a high complexity of the lithium ionic motion in Li(5)La(3)Nb(2)O(12).  相似文献   

8.
Residual dipolar couplings between spin-1/2 and quadrupolar nuclei are often observed and exploited in the magic-angle spinning (MAS) NMR spectra of spin-1/2 nuclei. These orientation-dependent splittings contain information on the dipolar interaction, which can be translated into structural information. The same type of splittings may also be observed for pairs of quadrupolar nuclei, although information is often difficult to extract from the quadrupolar-broadened lineshapes. Here, the complete theory for describing the dipolar coupling between two quadrupolar nuclei in the frequency domain by Hamiltonian diagonalization is given. The theory is developed under MAS and double-rotation (DOR) conditions, and is valid for any spin quantum numbers, quadrupolar coupling constants, asymmetry parameters, and tensor orientations at both nuclei. All terms in the dipolar Hamiltonian become partially secular and contribute to the NMR spectrum. The theory is validated using experimental 11B and 35/37Cl NMR experiments carried out on powdered B-chlorocatecholborane, where both MAS and DOR are used to help separate effects of the quadrupolar interaction from those of the dipolar interaction. It is shown that the lineshapes are sensitive to the quadrupolar coupling constant of both nuclei and to the J coupling (including its sign). From these experiments, the dipolar coupling constant for a heteronuclear spin pair of quadrupolar nuclei may be obtained as well as the sign of the quadrupolar coupling constant of the perturbing nucleus; these are two parameters that are difficult to obtain experimentally otherwise.  相似文献   

9.
Goldman's spin-1/2 formalism has been used for describing the response of an I=3/2 spin system to a two-pulse sequence in a pure nuclear quadrupole resonance experiment. A detailed analysis of the polarization evolution and quadrupolar echo generation is carried out through the use of explicit expressions for secular homo- and heteronuclear dipolar interactions. In striking contrast with previous studies, it is predicted that Van Vleck's second moments governing a classical solid-echo or Hahn sequence differ from those obtained by equivalent means in magnetic resonance. In fact, it is shown that, although measured moments still complement each other, the combined use of standard sequences does not allow the separate determination of homo- and heteronuclear dipolar contributions to the linewidth, not even in an indirect manner. In this context, the importance and potential usefulness of a crossed coil probe are also briefly discussed.  相似文献   

10.
《Solid State Ionics》2006,177(17-18):1405-1411
Two model compounds, lithium imidazolium (LiIm) and lithium 2-undecylimidazolium (und-LiIm), were synthesized. These materials are chosen as models of potential lithium ion conductors for use as electrolytes in lithium batteries. Solid-state NMR was used to provide information on the microscopic interactions including ionic mobility and ring reorientations which govern the efficiency of conductivity. Lithium imidazolium was mixed with lithium methylsulfonate, generating a doped complex in which a doubly lithiated imidazole ring was inferred based on the 7Li NMR chemical shifts. Our research includes 6,7Li variable temperature MAS NMR experiments at intermediate spinning speeds, relaxation studies to determine spin-lattice relaxation times (T1) of lithium ion hopping, and 2D exchange spectroscopy to determine possible chemical exchange processes. The possibility of 2-site ring reorientation for the doubly lithiated imidazole ring was supported by exchange spectroscopy. Comparisons of spin-lattice relaxation times and corresponding activation energies of the lithium imidazolium and the doped complex point to a higher degree of mobility in the latter.Lithium 2-undecylimidazolium was prepared and exhibited a lower melting point than the parent lithium imidazolium, as expected. This small molecule was chosen as representative of a side-chain functionalized polyethylene-based material. 7Li MAS spectra show mainly the presence of the doubly lithiated imidazole ring in pure und-LiIm, and in the LiCH3SO3–und-LiIm mixture. The data clearly indicate local mobility of the lithium ions in the materials.  相似文献   

11.
The exact expression for the Curie temperature of a spin-1 Bethe lattice with dipolar and quadrupolar interactions is derived and the nature of variation of the Curie temperature with quadrupolar interaction constant is studied.  相似文献   

12.
We present a new CPMAS method that allows the acquisition of through-space 2D HETCOR spectra between spin-1/2 nuclei and half-integer quadrupolar nuclei in the solid state. It uses rotor-synchronized selective pulses on the quadrupolar nucleus and continuous-wave RF irradiation on the spin-1/2 nucleus to create hetero-nuclear dipolar coherences. The method is more robust, more efficient, and easier to set up than the standard CPMAS transfer.  相似文献   

13.
It is found that the linewidth of the B-site Mössbauer spectrum of an Fe3O4 single crystal at room temperature is strongly dependent on the direction of the externally applied magnetic field. The broadening of the line 1B observed in polycrystalline materials is concluded to be largely determined by magnetic dipolar and electric quadrupolar effects, and therefore cannot serve as proof for an electron hopping model.  相似文献   

14.
We present several new methods that allow to obtain through-space 2D HETCOR spectra between spin-1/2 and half-integer quadrupolar nuclei in the solid state. These methods use the rotary-resonance concept to create hetero-nuclear coherences through the dipolar interaction instead of scalar coupling into the HMQC and refocused INEPT experiments for spin n/2 (n>1). In opposite to those based on the cross-polarization transfer to quadrupolar nuclei, the methods are very robust and easy to set-up.  相似文献   

15.
A rotary resonance echo double resonance (R-REDOR) experiment is described for measuring heteronuclear dipolar coupling under magic-angle spinning. Rotary resonance reintroduces both dipolar coupling and chemical shift anisotropy with an rf field matching the spinning frequency. The resonance effect from chemical shift anisotropy can be refocused with a rotary resonance echo. The R-REDOR experiment thus measures the dephasing of the rotary resonance echo from the heteronuclear dipolar coupling to determine the dipolar coupling constant. The rotary resonance experiment is suitable for measuring dipolar coupling with quadrupolar nuclei because it applies the recoupling rf only to the observed spin-1/2. The rotary resonance scheme has the advantages of a long T2' and susceptible to spinning frequency fluctuation.  相似文献   

16.
白莹  吴锋  吴川 《光散射学报》2003,15(4):231-236
采用固相反应与液相反应,合成了新型锂离子电池正极材料LiMPO4(M=Fe,Mn)。粉末X光衍射表明材料均为纯相。对材料的显微拉曼光谱和红外光谱进行了研究和指认。循环伏安研究表明,含锂磷酸盐是一类有潜力的锂离子电池正极材料。  相似文献   

17.
Polarization Inversion Spin Exchange at Magic Angle (PISEMA) is a powerful experiment for determining peptide orientation in uniformly aligned samples such as planar membranes. In this paper, we present (14)N-PISEMA experiment which correlates (14)N quadrupolar coupling and (14)N-(1)H dipolar coupling. (14)N-PISEMA enables the use of (14)N quadrupolar coupling tensor as an ultra sensitive probe for peptide orientation and can be carried out without the need of isotope enrichment. The experiment is based on selective spin-exchange between a proton and a single-quantum transition of (14)N spins. The spin-exchange dynamics is described and the experiment is demonstrated with a natural abundant N-acetyl valine crystal sample.  相似文献   

18.
A two-dimensional correlation experiment is described, in which homonuclear dipolar couplings are used to realize through-space magnetization exchange on spin-1/2 (31P) and on quadrupolar nuclei (23Na and 11B). In the detection period, Magic Angle Spinning is applied to enhance resolution, and the dipole couplings are re-introduced in the mixing period by spinning off the Magic Angle. The dependency of the exchange rates on the mixing time and the spinning angle is investigated. The influence of strong spin-locking during mixing is discussed, and shown in the spin-1/2 case to remove the dependence on chemical shift offset effects. For quadrupolar spins, the experiment yields information on the relative tensor orientations of the coupled quadrupoles. Applications to crystalline sodium aluminum diphosphate, sodium sulphite, and potassium borate glasses are shown.  相似文献   

19.
The tunneling of two lithium ion impurities on next-nearest neighbor sites in potassium chloride are investigated both experimentally and theoretically. The strong dipolar interaction leads to coherent tunneling motion of the two defect ions between degenerate off-center positions. Comparing data of rotary echo experiments for impurity pairs 7Li—7Li, 6Li—6Li, and 7Li—6Li with theory permits a thorough investigation of the isotope effect and of the effect of the interaction on the tunnel states. Our findings confirm the tunneling model with <111> off-center states to be valid even for strongly interacting impurities. Using degenerate perturbation theory in terms of two-particle states, we obtain essentially exact expressions for the tunneling spectrum and the dynamical susceptibility which agree well with the measured data.  相似文献   

20.
The application of multiple quantum filtered (MQF) NMR to the identification and characterization of the binding of ligands containing quadrupolar nuclei to proteins is demonstrated. Using relaxation times measured by MQF NMR multiple binding of boric acid and borate ion to ferri and ferrocytochrome c was detected. Borate ion was found to have two different binding sites. One of them was in slow exchange, k(diss) = 20 +/- 3 s(-1) at 5 degrees C and D(2)O solution, in agreement with previous findings by (1)H NMR (G. Taler et al., 1998, Inorg. Chim. Acta 273, 388-392). The triple quantum relaxation of the borate in this site was found to be governed by dipolar interaction corresponding to an average B-H distance of 2.06 +/- 0.07 A. Other, fast exchanging sites for borate and boric acid could be detected only by MQF NMR. The binding equilibrium constants at these sites at pH 9.7 were found to be 1800 +/- 200 M(-1) and 2.6 +/- 1.5 M(-1) for the borate ion and boric acid, respectively. Thus, detection of binding by MQF NMR proved to be sensitive to fast exchanging ligands as well as to very weak binding that could not be detected using conventional methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号