首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper discusses a novel approach for predicting permeate flux decline in constant pressure ultrafiltration of protein solutions. A constant pressure process is assumed to be made up of a large number of small, sequential, constant flux ultrafiltration steps: the flux decreasing due to fouling and other related factors at the end of each step. The advantage of this approach is that constant flux ultrafiltration is easier to study, characterize, and model than constant pressure ultrafiltration. Consequently model parameters can be obtained in reliable and reproducible manner. Constant pressure ultrafiltration is dynamic in nature since both the magnitude of osmotic back-pressure and the extent of membrane fouling decrease as the permeate flux decreases with time. The proposed model takes into consideration the interplay between permeate flux, concentration polarization, and membrane fouling. The model demonstrates that the initial rapid flux decline is due to a combination of concentration polarization and membrane fouling while during the remaining part of the process, the effect of concentration polarization becomes negligible. The model also shows that concentration polarization affects the initial flux decline only at higher transmembrane pressures. This model which was validated using experimental data is conceptually simpler than other available models and easy to use. In addition to its value as a predictive tool it would particularly be useful for deciding appropriate start-up conditions in ultrafiltration processes.  相似文献   

2.
The conventional operating membrane of a laboratory membrane filtration process is to apply controlled transmembrane pressures to the retentate side of the membrane, with the permeate side open ended. Often the minimum transmembrane pressure available is sufficient to cause membrane fouling in a given system. A membrane rig has been built which monitors transmembrane pressure in increments of 0.001 bar and by pumping permeate at a specified rate controls the flux to be constant. The technique used allows sensitive detection of trace fouling. Under a variety of low flux conditions fouling was not observed and it was found to be useful to produce an experimentally related definition of two types of critical flux. In the first definition a `strong form' of critical flux exists if the flux of a suspension is identical to the flux of clean water at the same transmembrane pressure. In the second definition a `weak form' of the critical flux exists if the relationship between transmembrane pressure and flux is linear, but the slope of the line differs from that for clean water. This paper describes how the use of this operating mode led to the successful experimental measurements of critical fluxes for two colloidal silica suspensions, BSA solution and a baker's yeast suspension with a 50k MWCO membrane. These measurements could not be made successfully in constant-pressure mode. The paper also reports experimental evidence in support of a `strong form' of the critical flux for the filtration of X30 silica suspension. Finally, we report the effect of membrane pore size on critical flux measurements for the three types of feed fluids.  相似文献   

3.
Controlling ultrafiltration (UF) and microfiltration (MF) membrane fluxes at or around a region where fouling is minimal can provide an interesting and economic operating regime. Selectivity may be enhanced and cleaning may be easier. For a given flux it is sometimes possible to filter a product suspension at the same trans-membrane pressure (TMP) as for pure water (PWP), but this can require a lot of energy input to maintain cross-flow or high shear in other ways if high fluxes are required. The critical flux is the flux above which one starts to observe fouling. By operating at lower cross-flow velocities and just above the critical flux, and thus, with lower TMPs, periodic cleaning can be effected by temporarily stopping permeation. A change in feed rate demands a change in flux which is obtained by temporarily increasing energy inputs. Controlled flux improves macromolecular fractionation. As flux increases the rejection of high molecular weight materials decreases whilst that of lower molecular weight materials decreases. This paper discusses the causes of fouling and the use controlled flux operation to mitigate its effects.  相似文献   

4.
The formation of deposit on the membrane surface (fouling) is one of the major operating problems of membrane distillation process. The influence of fouling on the performance of this process was investigated during the concentration of wastewater with proteins, bilge water, brines, and the production of demineralized water. The experiments were performed with polypropylene capillary membranes. The morphology and composition of the fouling layer were studied using Fourier transform infrared with diffuse reflectance spectroscopy and scanning electron microscopy coupled with the energy dispersing spectrometry. Fouling with various intensity was observed in most of the studied cases. Permeate flux decline was mainly caused by an increase in the heat resistance of the fouling layer. However in the case of non-porous deposit, a magnitude of the permeate flux was also determined by a resistance of water transport through the deposit layer. It was found the deposits were formed not only on the membrane surface, but also inside the pores. Salt crystallization in the membrane pores besides their wetting, also caused the mechanical damage of the membrane structure. The intensity of the fouling can be limited by the pretreatment of feed and a selection of the operating conditions of membrane distillation.  相似文献   

5.
New membrane distillation configurations and a new membrane module were investigated to improve water desalination. The performances of three hydrophobic microporous membranes were evaluated under vacuum enhanced direct contact membrane distillation (DCMD) with a turbulent flow regime and with a feed water temperature of only 40 °C. The new configurations provide reduced temperature polarization effects due to better mixing and increased mass transport of water due to higher permeability through the membrane and due to a total pressure gradient across the membrane. Comparison with previously reported results in the literature reveals that mass transport of water vapors is substantially improved with the new approach. The performance of the new configuration was investigated with both NaCl and synthetic sea salt feed solutions. Salt rejection was greater than 99.9% in almost all cases. Salt concentrations in the feed stream had only a minor effect on water flux. The economic aspects of the enhanced DCMD process are briefly discussed and comparisons are made with the reverse osmosis (RO) process for desalination.  相似文献   

6.
Application of ultrafiltration, nanofiltration, reverse osmosis, membrane distillation, and integrated membrane processes for the preparation of process water from natural water or industrial effluents was investigated. A two-stage reverse osmosis plant enabled almost complete removal of solutes from the feed water. High-purity water was prepared using the membrane distillation. However, during this process a rapid membrane fouling and permeate flux decline was observed when the tap water was used as a feed. The precipitation of deposit in the modules was limited by the separation of sparingly soluble salts from the feed water in the nanofiltration. The combined reverse osmosis—membrane distillation process prevented the formation of salt deposits on the membranes employed for the membrane distillation. Ultrafiltration was found to be very effective removing trace amounts of oil from the feed water. Then the ultrafiltration permeate was used for feeding of the remaining membrane modules resulting in the total removal of oil residue contamination. The ultrafiltration allowed producing process water directly from the industrial effluents containing petroleum derivatives. Presented at the 33rd International Conference of the Slovak Society of Chemical Engineering, Tatranské Matliare, 22–26 May 2006.  相似文献   

7.
A three mechanism model to describe fouling of microfiltration membranes   总被引:3,自引:0,他引:3  
Mathematical modeling of flux decline during filtration plays an important role in both sizing membrane systems and in the understanding of membrane fouling. Protein fouling is traditionally modeled using one of three classical fouling mechanisms: pore blockage, pore constriction or cake filtration. Here, we have developed a mathematical model to describe flux decline behavior during microfiltration accounting for all three classical fouling mechanisms. Pore constriction was assumed to first reduce the size of internal pores. Pore blockage then occurs at the top of the membrane, preventing further fouling to the interior structure. Finally the foulants at the top of the membrane form a cake, which controls the late stages of the filtration. The model prediction shows excellent agreement with experimental data for 0.25 μm polystyrene microspheres filtered through 0.22 μm Isopore membranes (where pore constriction is expected to be minimal) as well as non-aggregated bovine serum albumin solution through hydrophobic Durapore membranes (where pore constriction is expected to dominate). The effects of different fouling mechanisms on the flux decline were characterized by the ratio of characteristic fouling times of the different mechanisms. In this way the model can provide additional insights into the relative importance of different fouling mechanisms as compared to an analysis by a single mechanism model or by derivative plots, and it can be used to provide important insights into the flux decline characteristics.  相似文献   

8.
Microfiltration of whey protein solutions by tubular ceramic membranes, under constant cross-flow and trans-membrane pressure, with periodic backwashing, is investigated using a fully instrumented pilot unit. Relatively large nominal membrane pore size (0.8 μm) insures very high protein transmission, which is desirable in applications such as microbial load reduction. In the first of a sequence of three filtration-backwashing cycles, irreversible and reversible fouling are identified, over the tested pressure range of 5–17.5 psi. Early in the first cycle, especially at the higher pressures, a pore constriction/blocking mechanism appears to be responsible for the irreversible fouling. In the other two cycles only the reversible fouling is significant, possibly due to some kind of protein layer formation on the membrane surface. The permeate flux level tends to increase by increasing trans-membrane pressure up to a near-optimum value of 10 psi, beyond which pressure has a negative effect. This interesting trend is attributed to the interplay of cross-flow velocity, which tends to reduce fouling by promoting re-suspension and breakage of colloidal protein agglomerates, with the trans-membrane pressure (and related flux) which leads to protein layer formation on the membrane and may impose compressive stresses, thereby increasing its resistance to permeation.  相似文献   

9.
The effect of operating parameters on fouling of a ceramic microfiltration membrane by corn starch hydrolysate of 95 dextrose equivalence was studied. Transmembrane pressures above 100 kPa had little or no effect on flux. Cross-flow velocity had a significant beneficial effect. The rate of flux decline was reduced significantly when the feed was adjusted from its natural pH of 4.2 to 10. However, this resulted in a dark brown clarified syrup (permeate). Scanning electron microscopy showed extensive fouling layers on the alumina surface with conventionally processed dextrose solutions and the least fouling layer with corn starch hydrolysate adjusted to pH 10. Maximum steady state flux for unconcentrated hydrolysate at its natural pH was 178 LMH obtained at low transmembrane pressures (103 kPa, 15 psi) and high cross-flow velocities (5 m s−1). Adjustment of the pH to 10 can increase the flux by 40%.  相似文献   

10.
Two α-alumina ceramic membranes (0.2 and 0.8 μm pore sizes) and a surface-modified polyacrylonitrile membrane (0.1 μm pore size) were tested with an oily water, containing various concentrations (250–1000 ppm) of heavy crude oil droplets of 1–10 μm diameter. Significant fouling and flux decline were observed. Typical final flux values (at the end of experiments with 2 h of filtration) for membranes at 250 ppm oil in the feed are ≈30–40 kg m−2 h−1. Increased oil concentrations in the feed decreased the final flux, whereas the crossflow rate, transmembrane pressure, and temperature appeared to have relatively little effect on the final flux. In all cases, the permeate was of very high quality, containing <6 ppm total hydrocarbons. The addition of suspended solids increased the final membrane flux by one order of magnitude. It is thought that the suspended solids adsorb the oil, break up the oil layer, and act as a dynamic or secondary membrane which reduces fouling of the underlying primary membrane. Resistance models were used to characterize the type of fouling that occurs. Both the 0.2 μm and the 0.8 μm ceramic membranes appeared to exhibit internal fouling followed by external fouling, whereas external fouling characterized the behavior of the 0.1 μm polymer membrane from the beginning of filtration. Examination of the external fouling layer showed a very thin hydrophobic oil layer adsorbed to the membrane surface. This oil layer made the membrane surface hydrophobic, as demonstrated by increased water-contact angles. The oil layer proved resistant to removal by hydrodynamic (shear) methods. By extracting the oil layer with tetrachloroethylene, followed by IR analysis, its average thickness at the end of a 2 h experiment under typical conditions was determined to be 60 μm for the 0.2 μm ceramic membrane and 30 μm for the 0.1 μm polymer membrane. These measured amounts of oil associated with the membrane at the end of the experiments are in good agreement with those determined from a simple mass balance, in which it is assumed that all of the oil associated with the permeate collected is retained on or in the membrane, indicating that the tangential flow did not sweep the rejected oil layer to the filter exit.  相似文献   

11.
Nanofiltration of naturally-occurring dissolved organic matter (NOM) by an aromatic polyamide membrane was measured in a crossflow bench-scale test cell and modeled using a semi-empirical osmotic pressure/cake formation model. Our objective was to examine flux decline due to NOM fouling while explicitly accounting for flux decline due to osmotic effects and changes in membrane permeability. This approach allowed quantification of the effect of ionic composition on specific NOM cake resistance, and yielded insight into flux decline due to enhanced NaCl rejection by the NOM deposit. In the absence of NOM, increasing NaCl concentration reduced salt rejection and decreased membrane permeability. Flux decline was modeled by accounting for changes in osmotic pressure with time, and by employing an effective permeability. The addition of calcium significantly reduced rejection of sodium and feed conductivity, and thus mitigated flux decline. Increasing pH from 4 (near membrane pI) to 10 increased the effective permeability but also increased NaCl rejection, which resulted in greater flux decline. The presence of NOM caused greater flux decline resulting from a combination of NOM cake resistance and increased rejection of NaCl by negatively charged NOM functional groups. Increasing NaCl concentration had little effect on the mass of NOM deposited, but significantly increased the specific resistance of the NOM cake. The effect of ionic strength on specific resistance correlated with a reduction in NOM size, estimated by separate UF permeation experiments and size exclusion chromatography analysis of UF permeate. Therefore, increased specific cake resistance is consistent with a more compact, less porous cake. Flux decline by NOM solutions showed a maximum at pH 7, where salt rejection was also a maximum. Binding of calcium reduced the ability of NOM to enhance NaCl rejection, and likely increased NOM cake resistance. Flux decline caused by NOM fouling in the presence of calcium was only significantly different than that caused by NOM in a solution of NaCl at the same ionic strength when the calcium concentration corresponded to saturation of NOM binding sites.  相似文献   

12.
Normalization of permeate flux data is widely used to characterize membrane fouling under different experimental conditions. The main intention of normalization is to allow a fair comparison of feed water fouling potentials by eliminating the effects of different operational parameters used in the experiments, such as net driving pressure and clean-membrane resistance. However, it was demonstrated that the commonly used intuitive normalization methods usually could not serve their intended purpose. In this study, a new normalization method was proposed for characterizing water-fouling potential based on fundamental principles of membrane fouling. The intention of this normalization method was to define a fouling potential for feed water that was independent of, or at least, not strongly affected by operational conditions. Laboratory-scale ultrafiltration fouling tests were conducted under different colloid sizes, concentrations, and driving pressures. The experiments showed that the fouling potentials defined by the newly proposed normalization method were linearly related to the colloid concentration of the feed water and that the effect of operational conditions used in the fouling experiments on the fouling potential was minimal.  相似文献   

13.
Naphthenic acids are naturally occurring organics in produced waters from oil recovery operations. In principle, these contaminants can be removed using micellar-enhanced ultrafiltration (MEUF), which is an effective technique for the removal of organic contaminants from water streams. In this work, we show that the amphiphilic nature of the naphthenic acids contributed to decreasing the critical micelle concentration (CMC) of cetylpyridinium chloride (CPC), a widely used surfactant in MEUF. This reduction in CMC allowed a decrease in the CPC dosage required to attain certain removal of the organics, and hence, improved the performance of traditional MEUF as a result of reducing back contamination and potential fouling of the membrane. The effect of CPC feed concentration, and the concentration and carbon number of the naphthenic acids on permeate flux, recovery ratio and percent rejection of CPC and naphthenic acids were explored over a range of trans-membrane pressure. The MEUF setup employed hydrophilic polyacrylonitrile (PAN) hollow fiber membrane with 13 kDa MWCO, since it allowed for high permeate flux and contaminant rejection.  相似文献   

14.
Severe flux decline was observed during ultrafiltration of a pulp mill effluent. Membrane fouling was the result of varying combinations of adsorption, pore plugging and concentration polarization or gel layer formation. A wide range of membrane materials and pore sizes were evaluated, showing the relationship between the membrane material, pore size and the relative contribution of the different fouling mechanisms. Individual resistances were evaluated for adsorption, Ra, pore plugging, Rpp, and concentration polarization, Rcp, using a series resistance model. These were based on the pure water flux for (1) the new membrane, Ji, (2) after static adsorption with the mill effluent, Ja, (3) the product rate when ultrafiltering the effluent, Jv, and (4) the pure water permeability with the fouled membrane, Jf. These resistances were shown to be misleading in terms of the observed flux loss for cases with significant adsorptive fouling. Adsorptive fouling was underestimated and concentration polarization overestimated. An alternative method, which we shall call flux loss ratios, is proposed, which is based on the flux decline due to a particular mechanisms as a fraction of the overall flux decline. These new measures more accurately reflect the flux decline attributable to each fouling mechanism.  相似文献   

15.
Direct contact membrane distillation (DCMD) experiments using distilled water are reported. Influence on the process of feed and permeate flow rates through the cell has been investigated in a wide flow range, from 2 to 8 l/min. Two main effects have been studied, its effect on the heat transfer coefficient and on the effective membrane thickness. An empiric dependence of the membrane thickness with linear velocity through the cell has been included in the equation for mass flux through the membrane obtained from the “Dusty-Gas” model with satisfactory results.  相似文献   

16.
The inaccessibility of clean water is one of the growing issues of this era. Indeed, cost-effective and sustainable methods for recycling wastewater are essential. Although membrane separation is an efficient technology for the recycling and purification of water, membrane fouling is still a major drawback of this technology. This work is aimed to develop a dynamic method to form gel layer membranes (GLMs) by manipulating the irreversible fouling process itself as a problem-solving approach. A microporous polyvinylidene fluoride (PVDF) support is subjected to gel layer formation by applying a supernatant of industrial aerobic sludge (containing soluble extracellular polymeric substances EPS) as a feed. Retention of polysaccharides and calcium during the filtration and the topographical analysis after the filtration show that EPS uniformly formed a gel layer on the PVDF support. No further decline in permeability is observed (i.e. remained around 27–33 L/m2 hr) when the formed GLM is subjected to fouling under similar conditions. Moreover, the percent flux recovery ratio (FRR) of the GLM is also significant (i.e. 90.1 ± 2.71). The retention ability, hydrophilicity, porosity, and water uptake capability of the formed GLM also increased significantly. The optimal performance and stability of GLMs are observed at room temperature (RT) under neutral pH and sub-critical trance membrane pressures (TMP). Based on these results it is suggested that the in-situ manipulation of gel layer fouling is a viable approach for preparing fouling resistant GLMs with high retention efficiency, potentially applicable to wastewater treatment under normal conditions.  相似文献   

17.
The effects of a water-permeable polymer coating on the performance and fouling of high-flux (ESPA1 and ESPA3) and low-flux (SWC4) polyamide reverse osmosis (RO) membranes were investigated. It was anticipated that the coating would create a smoother hydrophilic surface that would be less susceptible to fouling when challenged with a motor-oil/surfactant/water feed emulsion (used as a model foulant). AFM and FT-IR analyses confirm that a 1 wt.% polyether–polyamide (PEBAX® 1657) solution applied to ESPA and SWC4 membranes produces a continuous polymer coating layer and, thereby, provides smoother membrane surfaces. However, pure-water permeation data combined with a series-resistance model analysis reveal that the coating does not only cover the surface of the polyamide membrane, but also penetrates into its porous ridge-and-valley structure. During a long-term (106-day) fouling test with an oil/surfactant/water emulsion, the rate of flux decline was slower for coated than for uncoated membranes. This improvement in fouling resistance compensated for the decrease in permeate flux for SWC4 over a period of approximately 40 days. However, the coating material is believed to penetrate more deeply into the polyamide surface layer of the high flux, high surface area ESPA membranes relative to the low-flux SWC4, resulting in significant water flux reduction.  相似文献   

18.
The growing attention to forward osmosis (FO) membrane processes from various disciplines raises the demand for systematic research on FO membrane fouling. This study investigates the role of various physical and chemical interactions, such as intermolecular adhesion forces, calcium binding, initial permeate flux, and membrane orientation, in organic fouling of forward osmosis membranes. Alginate, bovine serum albumin (BSA), and Aldrich humic acid (AHA) were chosen as model organic foulants. Atomic force microscopy (AFM) was used to quantify the intermolecular adhesion forces between the foulant and the clean or fouled membrane in order to better understand the fouling mechanisms. A strong correlation between organic fouling and intermolecular adhesion was observed, indicating that foulant–foulant interaction plays an important role in determining the rate and extent of organic fouling. The fouling data showed that FO fouling is governed by the coupled influence of chemical and hydrodynamic interactions. Calcium binding, permeation drag, and hydrodynamic shear force are the major factors governing the development of a fouling layer on the membrane surface. However, the dominating factors controlling membrane fouling vary from foulant to foulant. With stronger intermolecular adhesion forces, hydrodynamic conditions for favorable foulant deposition leading to cake formation are more readily attained. Before a compact cake layer is formed, the fouling rate is affected by both the intermolecular adhesion forces and hydrodynamic conditions. However, once the cake layer forms, all three foulants have very similar flux decline rates, and further changes in hydrodynamic conditions do not influence fouling behavior.  相似文献   

19.
The concentration of NaCl solution containing natural organic matter by membrane distillation (MD) has been performed. The salt solution produced during animal intestines processing was used as a feed. The presence of organic compounds in the feed caused the fouling of MD membranes. The experiments were performed with polypropylene capillary membranes. A rapid flux decline caused by the deposition of organic matter on the membrane surface has been observed. The morphology and composition of the fouling layer was studied using scanning electron microscopy (SEM) coupled with energy dispersion spectrometry (EDS) and Fourier transform infrared with diffuse reflectance spectroscopy (FTIR-DRS). Protein and sodium chloride constituted the major components of the gel layer. Rinsing of the MD module with a 2 wt.% citric acid solution removed a part of the fouling layer. Boiling of spent NaCl solution followed by filtration resulted in the separation of the organic matter in the form of a deposit. This enabled a significant reduction in the occurrence of fouling phenomenon.  相似文献   

20.
A rapid characterization method was used to study protein fouling of cellulose acetate membrane during dead-end, in-line, constant flux microfiltration. Based on pressure-permeate volume profiles, two fouling phases could be identified and compared at different permeate fluxes. Using protein staining dyes, the model foulant (bovine serum albumin) was found to deposit on the upstream side of the membrane as a loose cake at its isoelectric point. The effects of solution pH on both the nature and extent of membrane fouling, and membrane cleaning were examined. To further understand and quantitatively analyze the fouling behavior, a combined mathematical model which took into account pore blocking, cake formation and pore constriction was developed based on existing fouling models. The data obtained by modeling was in good agreement with experimental fouling data. Theoretical analysis of data clearly indicated that cake formation was the main fouling mechanism. Using methods such as dynamic light scattering, the significant role of large protein aggregates in membrane fouling was confirmed. The dimer composition of protein did not change significantly during the fouling experiments, clearly indicating that smaller aggregates played less important role in membrane fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号