共查询到20条相似文献,搜索用时 18 毫秒
1.
Schmidt K Brovelli S Coropceanu V Beljonne D Cornil J Bazzini C Caronna T Tubino R Meinardi F Shuai Z Brédas JL 《The journal of physical chemistry. A》2007,111(42):10490-10499
A comprehensive study of the photophysical properties of a series of monoaza[5]helicenes is presented on the basis of joint optical spectroscopy and quantum chemistry investigations. The molecules have been characterized by absorption and CW/time-resolved luminescence measurements. All quantities related to spin-orbit-coupling processes, such as intersystem crossing rates and radiative phosphorescence lifetimes, were found to depend strongly on the nitrogen position within the carbon backbone. Density functional theory and semiempirical quantum-chemical methods were used to evaluate the molecular geometries, the characteristics of the excited singlet and triplet states, and the spin-orbit coupling matrix elements. We demonstrate that the magnitude of spin-orbit coupling is directly correlated with the degree of deviation from planarity. The trends from the calculated photophysical quantities, namely, radiative fluorescence and phosphorescence decay rates and intersystem crossing rates, of the mono-aza-helicenes are fully consistent with experiment. 相似文献
2.
Pettersson K Kilså K Mårtensson J Albinsson B 《Journal of the American Chemical Society》2004,126(21):6710-6719
We have investigated how the spin state of an acceptor influences the photophysical processes in a donor-bridge-acceptor (D-B-A) system. The system of choice has zinc porphyrin as the electron donor and high- or low-spin iron(III) porphyrin as the acceptor. The spin state of the acceptor porphyrin is switched simply by coordinating imidazole ligands to the metal center. The D-A center-center distance is 26 A, and the bridging chromophore varies from pi-conjugated to a sigma-bonded system. The presence of a high-spin iron(III) porphyrin in such systems has previously been shown to significantly enhance intersystem crossing in the remote zinc porphyrin donor, whereas no significant electron transfer to the iron porphyrin acceptor was observed, even though the thermodynamics would allow for photoinduced electron transfer. Here, we demonstrate that by switching the acceptor to a low-spin state, the dominating photophysical process is drastically changed; the low-spin system shows long-range electron transfer on the picosecond time-scale, and intersystem crossing occurs at its "normal" rate. 相似文献
3.
Michael K. Bowman 《Chemical physics letters》1977,48(1):17-21
Intersystem crossing (ISC) of chlorophyll a in solution exhibits a strong solvent dependence and a weak deuterium isotope effect. This is due to the importance of the molecular geometry in promoting ISC. These results are generalized to other closely related photosynthetic pigments. 相似文献
4.
Measurements of the quantum yield of 9,10-diphenylanthracene autoperoxidation as a function of dissolved oxygen concentration in benzene at 25°C are consistent with an intersystem crossing yield of 0.13 ± 0.03 for this molecule and the absence of the spin-allowed exothermic process S1 + O23Σ → T1 + O2 Δ. These conclusions indicate the presence of a second triplet state below S1. 相似文献
5.
C. J. Nonhof F. L. Plantenga J. Schmidt C. A. G. O. Varma J. H. van der Waals 《Chemical physics letters》1979,60(3):353-357
We have observed the free induction decay signal of the Tz–Ty zero-field transition at 859.5 MHz of the lowest excited triplet state of tetramethylpyrazine-d12 in durene following flash excitation at 266 nm in the singlet manifold. The experiment proves that on intersystem crossing the molecules end up in a non-stationary superposition of two zero-field spin states which is coherent throughout the ensemble. 相似文献
6.
Dance ZE Ahrens MJ Vega AM Ricks AB McCamant DW Ratner MA Wasielewski MR 《Journal of the American Chemical Society》2008,130(3):830-832
Understanding how the electronic structures of electron donor-bridge-acceptor (D-B-A) molecules influence the lifetimes of radical ion pairs (RPs) photogenerated within them (D+*-B-A-*) is critical to designing and developing molecular systems for solar energy conversion. A general question that often arises is whether the HOMOs or LUMOs of D, B, and A within D+*-B-A-* are primarily involved in charge recombination. We have developed a new series of D-B-A molecules consisting of a 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) electron donor linked to a naphthalene-1,8:4,5-bis(dicarboximide) (NI) acceptor via a series of Phn oligomers, where n = 1-4, to give DMJ-An-Phn-NI. The photoexcited charge transfer state of DMJ-An acts as a high-potential photoreductant to rapidly and nearly quantitatively transfer an electron across the Phn bridge to produce a spin-coherent singlet RP 1(DMJ+*-An-Phn-NI-*). Subsequent radical pair intersystem crossing yields 3(DMJ+*-An-Phn-NI-*). Charge recombination within the triplet RP then gives the neutral triplet state. Time-resolved EPR spectroscopy shows directly that charge recombination of the RP initially produces a spin-polarized triplet state, DMJ-An-Phn-3*NI, that can only be produced by hole transfer involving the HOMOs of D, B, and A within the D-B-A system. After the initial formation of DMJ-An-Phn-3*NI, triplet-triplet energy transfer occurs to produce DMJ-3*An-Phn-NI with rate constants that show a distance dependence consistent with those determined for charge separation and recombination. 相似文献
7.
《Chemical physics letters》1987,135(3):307-312
Shortly after their formation, transient free radicals trapped in micelles exhibit electron spin resonance (ESR) spectra with “antiphase” lineshapes, i.e. lines with their low-field halves in emission and high-field halves in absorption. It is demonstrated that this hitherto unexplained effect is consistent with the detection of ESR transitions in geminate radical pairs before the radicals have had time to diffuse apart. 相似文献
8.
Chernick ET Mi Q Vega AM Lockard JV Ratner MA Wasielewski MR 《The journal of physical chemistry. B》2007,111(24):6728-6737
A t-butylphenylnitroxide (BPNO*) stable radical is attached to an electron donor-bridge-acceptor (D-B-A) system having well-defined distances between the components: MeOAn-6ANI-Ph(BPNO*)-NI, where MeOAn=p-methoxyaniline, 6ANI=4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph=phenyl, and NI=naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, BPNO*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge, respectively. Time-resolved optical and EPR spectroscopy show that BPNO* influences the spin dynamics of the photogenerated triradical states 2,4(MeOAn+*-6ANI-Ph(BPNO*)-NI-*), resulting in slower charge recombination within the triradical, as compared to the corresponding biradical lacking BPNO*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn+* and NI-* is not altered by the presence of BPNO*. However, the increased spin density on the bridge greatly increases radical pair (RP) intersystem crossing from the photogenerated singlet RP to the triplet RP. Rapid formation of the triplet RP makes it possible to observe a biexponential decay of the total RP population with components of tau=740 ps (0.75) and 104 ns (0.25). Kinetic modeling shows that the faster decay rate is due to rapid establishment of an equilibrium between the triplet RP and the neutral triplet state resulting from charge recombination, whereas the slower rate monitors recombination of the singlet RP to ground state. 相似文献
9.
An unusual temperature effect on the intensity of fluorescence of 9-carbonyl derivatives of anthracene is observed. This is interpreted in terms of an intersystem crossing process from the lowest excited singlet state Sππ* to the higher excited triplet state Tnπ*. 相似文献
10.
Dance ZE Mickley SM Wilson TM Ricks AB Scott AM Ratner MA Wasielewski MR 《The journal of physical chemistry. A》2008,112(18):4194-4201
Time-resolved electron paramagnetic resonance studies show that the primary mechanism of triplet formation following photoexcitation of julolidine-anthracene molecules linked by a single bond and having perpendicular pi systems is a spin-orbit, charge-transfer intersystem crossing mechanism (SOCT-ISC). This mechanism depends on the degree of charge transfer from julolidine to anthracene, the dihedral angle (theta1) between their pi systems, and the magnitude of the electronic coupling between julolidine and anthracene. We compare 4-(9-anthracenyl)-julolidine with the more sterically encumbered 4-(9-anthracenyl)-3,5-dimethyljulolidine and find that fixing theta1 congruent with 90 degrees serves to enhance SOCT-ISC by increasing the change in orbital angular momentum accompanying charge transfer. Given that the requirements for the SOCT-ISC mechanism are quite general, we expect it to occur in a variety of electron donor-acceptor systems. 相似文献
11.
Shushin AI 《The journal of physical chemistry. A》2006,110(7):2345-2352
Specific features of spin relaxation and the kinetics of spin effect generation in radical pairs (RPs) undergoing subdiffusive relative motion are studied in detail. Two types of processes are analyzed: (1) spin relaxation in biradicals, resulting from anomalously slow subdiffuisive reorientation (with the correlation function P(t) approximately (wt)(-alpha), where 0 < alpha < 1) and (2) spin effect generation in subdiffusion-assisted RP recombination. Analysis is made with the use of the non-Markovian stochastic Liouville equation (SLE) derived within the continuous time random walk approach. The SLE predicts anomalous (very slow and nonexponential) spin relaxation in biradicals which results in some peculiarities of the spectrum of the system. In RP recombination, the subdiffusive relative motion shows itself in slow dependence of the reaction yield Y(r)() on reactivity and parameters of the RP spin Hamiltonian and anomalous electron spin polarization of escaped radicals. The spectrum of the reaction yield detected magnetic resonance, that is, the Y(r)() dependence on the frequency omega of microwave field, is found to be strongly non-Lorenzian with the width determined by the field strength omega(1) and very broad wings depending on alpha. Analysis shows that the majority of interesting, specific features of the observables in both systems are controlled only by the parameter alpha. 相似文献
12.
13.
Ricks AB Solomon GC Colvin MT Scott AM Chen K Ratner MA Wasielewski MR 《Journal of the American Chemical Society》2010,132(43):15427-15434
Photoinitiated charge separation (CS) and recombination (CR) in a series of donor-bridge-acceptor (D-B-A) molecules with cross-conjugated, linearly conjugated, and saturated bridges have been compared and contrasted using time-resolved spectroscopy. The photoexcited charge transfer state of 3,5-dimethyl-4-(9-anthracenyl)julolidine (DMJ-An) is the donor, and naphthalene-1,8:4,5-bis(dicarboximide) (NI) is the acceptor in all cases, along with 1,1-diphenylethene, trans-stilbene, diphenylmethane, and xanthone bridges. Photoinitiated CS through the cross-conjugated 1,1-diphenylethene bridge is about 30 times slower than through its linearly conjugated trans-stilbene counterpart and is comparable to that observed through the diphenylmethane bridge. This result implies that cross-conjugation strongly decreases the π orbital contribution to the donor-acceptor electronic coupling so that electron transfer most likely uses the bridge σ system as its primary CS pathway. In contrast, the CS rate through the cross-conjugated xanthone bridge is comparable to that observed through the linearly conjugated trans-stilbene bridge. Molecular conductance calculations on these bridges show that cross-conjugation results in quantum interference effects that greatly alter the through-bridge donor-acceptor electronic coupling as a function of charge injection energy. These calculations display trends that agree well with the observed trends in the electron transfer rates. 相似文献
14.
Applications of the electron spin echo (ESE) technique to determine the distance distribution function for radical-ion pairs stabilized in solids are described. The ESE signal intensity depends on the ion spin-lattice relaxation time T1, thus on temperature, as well as on the function n(r),n(r) can be determined up to a distance of 50 A. At r < 10 - 20 A it is possible to estimate the portion of radicals stabilized at these distances in the vicinity of a paramegnetic ion. The photochemical reaction Fe3+ + R2CH(OH)→Fe2+ +_R2C(OH) + H+ has been studied in glassy methanol and isopropanol. The pair distribution function n(r) has been obtained at 17 < r < 26 A. Its changes induced by radical diffusion have been studied. The portion of radicals stabilized at distance r < 17 A was about 80% for both alcohols. 相似文献
15.
16.
《Tetrahedron》1986,42(22):6207-6217
The photochemical reactions of a number of cyanoaromatic (acceptor) and methylaromatic (donor) molecules have been investigated. These reactions can result in the formation of photosubstitution products or benzyl radical coupling products. A survey of our results and previously published data indicates that exergonic photostimulated electron transfer is a necessary but not sufficient condition for the observation of reaction products. The efficiency of proton transfer from the donor cation radical to the acceptor anion radical is determined by the kinetic acidity and basicity of the radical ion pair. Mechanistic evidence is presented which indicates that proton transfer requires diffusion apart and reencounter of the initially formed radical ion pair. Predominant radical pair combination is observed for anion radicals which yield electron-deficient free radicals upon protonation, whereas predominant cage escape and benzyl radical coupling is observed for anion radicals which yield electron-rich free radicals upon protonation. 相似文献
17.
Time-resolved ESR signals of quasi-stable spin correlated radical pairs were observed in the laser flash photolysis of xanthone
and phenol derivatives in SDS micellar solutions. It was concluded that the fast population relaxation between two eigenstates
of S and T0 occurs and the interaction of the spin correlated radical pair is preserved for a few μs in the micellar aggregate. 相似文献
18.
Chernick ET Mi Q Kelley RF Weiss EA Jones BA Marks TJ Ratner MA Wasielewski MR 《Journal of the American Chemical Society》2006,128(13):4356-4364
Appending a stable radical to the bridge molecule in a donor-bridge-acceptor system (D-B-A) is potentially an important way to control charge- and spin-transfer dynamics through D-B-A. We have attached a nitronyl nitroxide (NN*) stable radical to a D-B-A system having well-defined distances between the components: MeOAn-6ANI-Ph(NN*)-NI, where MeOAn = p-methoxyaniline, 6ANI = 4-(N-piperidinyl)naphthalene-1,8-dicarboximide, Ph = phenyl, and NI = naphthalene-1,8:4,5-bis(dicarboximide). MeOAn-6ANI, NN*, and NI are attached to the 1, 3, and 5 positions of the Ph bridge. Using both time-resolved optical and EPR spectroscopy, we show that NN* influences the spin dynamics of the photogenerated triradical states (2,4)(MeOAn(+)*-6ANI-Ph(NN*)-NI(-)*), resulting in slower charge recombination within the triradical compared to the corresponding biradical lacking NN*. The observed spin-spin exchange interaction between the photogenerated radicals MeOAn(+)(*) and NI(-)(*) is not altered by the presence of NN*, which only accelerates radical pair intersystem crossing. Charge recombination within the triradical results in the formation of (2,4)(MeOAn-6ANI-Ph(NN*)-(3)NI), in which NN* is strongly spin-polarized. Normally, the spin dynamics of correlated radical pairs do not produce a net spin polarization; however, net spin polarization appears on NN* with the same time constant as describes the photogenerated radical ion pair decay. This effect is attributed to antiferromagnetic coupling between NN* and the local triplet state (3)NI, which is populated following charge recombination. This requires an effective switch in the spin basis set between the triradical and the three-spin charge recombination product having both NN* and (3)NI present. 相似文献
19.
Lewis FD Liu X Miller SE Hayes RT Wasielewski MR 《Journal of the American Chemical Society》2002,124(47):14020-14026
The dynamics of charge separation and charge recombination in synthetic DNA hairpins possessing diphenylacetylene-4,4'-dicarboxamide linkers have been investigated by means of femtosecond time-resolved transient absorption spectroscopy. The lowest excited singlet state of the linker is capable of oxidizing nearest neighbor adenine as well as guanine. A large wavelength shift in the transient absorption spectrum accompanies the conversion of the singlet linker to its anion radical, facilitating the investigation of electron-transfer dynamics. The rate constants for charge separation are dependent upon the oxidation potentials of the neighboring nucleobase donors but not upon the identity of nonnearest neighbors. Thus, the charge separation processes yield a contact radical ion pair in which the positive charge is localized on the neighboring nucleobase. Rate constants for charge recombination are dependent upon the identity of the first and second nearest-neighbor nucleobases but not more remote bases. This dependence is attributed to stabilization of the contact radical ion pair by interaction with its nearest neighbor. The absence of charge migration to form a base-pair separated radical ion pair is a consequence of Coulombic attraction in the contact radical ion pair and the low effective dielectric constant (epsilon < 7) experienced by the contact radical ion pair. Photoinduced charge injection to form a base-pair separated radical ion pair is necessary in order to observe charge migration. 相似文献
20.
Jian-xin Guo Qi-yuan Zhang 《Journal of photochemistry and photobiology. A, Chemistry》1997,110(3):1020-252
The internal reorganization energies λv for return electron transfer (ET) reactions within geminate radical ion pairs were studied using the extended Nelsen method. In the ET systems studied, the common acceptor was 9,10-dicyanoanthracene (DCA). The donors were methyl-substituted compounds of benzene, biphenyl, naphthalene and phenanthrene. The calculated results indicated that the λv values were associated mainly with the carbon atoms of the aromatic rings and the atoms linked directly to the aromatic rings. Systems with similar substituted conditions are expected to have similar internal reorganization energies. For systems in which the two aromatic rings of the donor can rotate relative to each other, the calculated λv values include a contribution from the change in torsional angle in the ET process. Compared with the system in which the donor is a fluorene molecule, the contributions of the torsional angles (low-frequency vibration) to λv were estimated. 相似文献