首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 174 毫秒
1.
Double-wall carbon nanotubes (DWCNTs), single-wall carbon nanotubes (SWCNTs), and multi-wall carbon nanotubes (MWCNTs) were investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells. The counter-electrodes were prepared on fluorine-doped tin oxide glass substrates by the screen printing technique from pastes of carbon nanotubes and organic binder. The solar cells were assembled from carbon nanotubes counter-electrodes and screen printed anodes made from titanium dioxide. The cells produced with DWCNTs, SWCNTs or MWCNTs have overall conversion efficiencies of 8.0%, 7.6% and 7.1%, respectively. Electrochemical impedance spectroscopy measurements revealed that DWCNTs displayed the highest catalytic activity for the reduction of tri-iodide ions. The large surface area and superior chemical stability of the DWCNTs facilitated the electron-transfer kinetics at the interface between counter-electrode and electrolyte and yielded the lowest transfer resistance, thereby improving the photovoltaic activity. A short-term stability test at moderate conditions confirmed the robustness of solar cells based on the use of DWCNTs, SWCNTs or MWCNTs.
Figure
Double-wall carbon nanotubes, single-wall carbon nanotubes and multi-wall carbon nanotubes have been investigated as an alternative for platinum in counter-electrodes for dye-sensitized solar cells (DSCs). The carbon nanotubes (CNTs) based DSCs exhibit efficiency high up to 8.0% and are comparable to the Pt based DSCs prepared in the same condition. The CNTs based DSCs have demonstrated a good stability.  相似文献   

2.
Dye-sensitized solar cells (DSCs) with cobalt-based mediators with efficiencies surpassing the record for DSCs with iodide-free electrolytes were developed by selecting a suitable combination of a cobalt polypyridine complex and an organic sensitizer. The effect of the steric properties of two triphenylamine-based organic sensitizers and a series of cobalt polypyridine redox mediators on the overall device performance in DSCs as well as on transport and recombination processes in these devices was compared. The recombination and mass-transport limitations that, previously, have been found to limit the performance of these mediators were avoided by matching the properties of the dye and the cobalt redox mediator. Organic dyes with higher extinction coefficients than the standard ruthenium sensitizers were employed in DSCs in combination with outer-sphere redox mediators, enabling thinner TiO(2) films to be used. Recombination was reduced further by introducing insulating butoxyl chains on the dye rather than on the cobalt redox mediator, enabling redox couples with higher diffusion coefficients and more suitable redox potential to be used, simultaneously improving the photocurrent and photovoltage of the device. Optimization of DSCs sensitized with a triphenylamine-based organic dye in combination with tris(2,2'-bipyridyl)cobalt(II/III) yielded solar cells with overall conversion efficiencies of 6.7% and open-circuit potentials of more than 0.9 V under 1000 W m(-2) AM1.5 G illumination. Excellent performance was also found under low light intensity indoor conditions.  相似文献   

3.
Ru(II) heteroleptic complexes as photosensitizers for dye-sensitized solar cells (DSCs) are presented. The article outlines design strategies, synthetic routes, optical and photovoltaic properties of ruthenium dyes based on polypyridines as ancillary ligands containing π-conjugated electron-rich heteroaromatic groups. The integration of donor heteroaromatic substituents, typically thiophene-based moieties, strongly improves the optical properties of the sensitizers in terms of bathochromic and hyperchromic shift compared to prototypical dyes N3 and N719. These favorable properties in turn yield DSCs with superior light harvesting abilities, higher external quantum efficiencies, improved device photocurrents, and top-ranked power conversion efficiencies. In combination with excellent stabilities under thermal stress and light soaking, this class of DSC photosensitizer has great potential for practical applications.  相似文献   

4.
The first examples of thiocyanate-free thiophene-substituted Ru(ii) cyclometalated complexes, based on thiophene-derived 2-(2,4-difluorophenyl)pyridine ligands, are presented and investigated as photosensitizers in DSCs. Upon thiophene substitution the complexes presented enhanced optical properties compared to the reference dye with no thiophene substitution. DSCs based on the dithienyl-derived dye showed power conversion efficiencies up to 5.7%, more than twice that containing the complex without the thiophene substitution.  相似文献   

5.
设计并制作了大面积高效全柔性染料敏化太阳能电池(DSCs).通过引入光散射层或施加机械压力,DSCs的光电转化效率有了大幅度提高.实验室小面积(0.4 cm×0.4 cm)柔性DSCs的光电转化效率达到5.50%.大面积(2 cm×3 cm,活性面积为2.7 cm2)DSCs的光电转化效率从未进行处理的1.52%上升到1.81%和2.50%,分别提高了20.0%和66.7%.5 cm×7 cm面积的DSCs(活性面积为16.2 cm2)的光是转化效率在未做任何优化处理的条件下达到了1.60%(光强40 mW·cm-2).同时,本文对提高光电转化效率的机理进行了深入研究.电化学阻抗测试结果表明,加压法能明显减小电池的内部串联电阻(Rs)及TiO2/染料/电解液界面间的传荷电阻(Rct).扫描电镜结果也显示加压后TiO2粒子之间粘结更加紧密,更利于电子在TiO2薄膜中的传输及染料的吸附.另外,900 h的长期稳定性实验结果表明,制作的柔性DSCs的各项光电性能参数均无明显下降.该实验结果为柔性染料敏化太阳能电池的基础研究和大面积产业化技术研究奠定了基础.  相似文献   

6.
A symmetric squaraine and its related non-symmetric structure are shown to have comparable efficiencies in DSCs, but with undoubtedly advantages in the low cost and easiness of synthesis for the symmetrical structure.  相似文献   

7.
Molybdenum sulfide (MoS(2)) and tungsten sulfide (WS(2)) are proposed as counter electrode (CE) catalysts in a I(3)(-)/I(-) and T(2)/T(-) based dye-sensitized solar cells (DSCs) system. The I(3)(-)/I(-) based DSCs using MoS(2) and WS(2) CEs achieved power conversion efficiencies of 7.59% and 7.73%, respectively.  相似文献   

8.
A series of metal‐free organic dyes that were bridged by a diketopyrrolopyrrole moiety and were composed of indoline and triphenylamine as donor groups and furan and benzene as conjugated spacer groups were designed and synthesized for use in dye‐sensitized solar cells (DSCs). The photophysical properties, electrochemical properties, and performance of the DSCs were related to the structure of their corresponding dyes. Their absorption spectra broadened upon the introduction of the indoline and heterocyclic furan moieties through fine‐tuning of their molecular configuration. The overall conversion efficiencies of DSCs that were based on these dyes ranged from 5.14–6.53 %. Among the four dyes that were tested, indoline‐based ID01 and ID02 showed higher efficiencies (6.35 % and 6.53 %) as a result of their improved light‐harvesting efficiency and larger electron driving force. The ID01 dye, which contained an indoline moiety as an electron donor and a furan group as a π‐conjugated linker, showed an excellent monochromatic incident‐photon‐to‐current‐conversion efficiency (IPCE) spectrum (350–650 nm) with a maximum value of 78 % in the high plateau region and an onset value close to 800 nm. Intensity‐modulated photovoltage spectroscopy (IMVS) and impedance spectroscopy (IS) revealed that dyes that contained benzene conjugation spacers suppressed the charge‐recombination rate more efficiently than dyes that contained furan spacers, thereby resulting in improved photovoltage.  相似文献   

9.
A series of organic thiolate/disulfide redox couples have been synthesized and have been studied systematically in dye-sensitized solar cells (DSCs) on the basis of an organic dye (TH305). Photophysical, photoelectrochemical, and photovoltaic measurements were performed in order to get insights into the effects of different redox couples on the performance of DSCs. The polymeric, organic poly(3,4-ethylenedioxythiophene) (PEDOT) material has also been introduced as counter electrode in this kind of noniodine-containing DSCs showing a promising conversion efficiency of 6.0% under AM 1.5G, 100 mW·cm(-2) light illumination. Detailed studies using electrochemical impedance spectroscopy and linear-sweep voltammetry reveal that the reduction of disulfide species is more efficient on the PEDOT counter electrode surface than on the commonly used platinized conducting glass electrode. Both pure and solvated ionic-liquid electrolytes based on a thiolate anion have been studied in the DSCs. The pure and solvated ionic-liquid-based electrolytes containing an organic redox couple render efficiencies of 3.4% and 1.2% under 10 mW·cm(-2) light illumination, respectively.  相似文献   

10.
Through a rapid and template‐free precipitation approach, we synthesized an asymmetric panel‐like ZnO hierarchical architecture (PHA) for photoanodes of dye‐sensitized solar cells (DSCs). The two sides of the PHA are constructed differently using densely interconnected, mono‐crystalline and ultrathin ZnO nanosheets. By mixing these PHAs with ZnO nanoparticles (NPs), we developed an effective and feasible strategy to improve the electrical transport and photovoltaic performance of the composite photoanodes of DSCs. The highly crystallized and interconnected ZnO nanosheets largely minimized the total grain boundaries within the composite photoanodes and thus served as direct pathways for the transport and effective collection of free electrons. Through low‐temperature (200 °C) annealing, these novel composite photoanodes achieved high conversion efficiencies of up to 5.59 % for ZnO‐based quasi‐solid DSCs.  相似文献   

11.
We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy.  相似文献   

12.
Dye-sensitized solar cells have been assembled using a sequential approach: a TiO(2) surface was functionalized with an anchoring ligand, followed by metallation with Zn(OAc)(2) or ZnCl(2), and subsequent capping with a chromophore functionalized 2,2':6',2'-terpyridine; the DSCs exhibit surprisingly good efficiencies confirming the effectiveness of the new strategy for zinc-based DSC fabrication.  相似文献   

13.
Double-walled carbon nanotubes (DWCNTs) have been studied for counter-electrode application in dye-sensitized solar cells (DSCs). Mesoporous TiO2 films are prepared from the commercial TiO2 nanopowders by screen-printing technique on optically transparent-conducting glasses. A metal-free organic dye (indoline dye D102) is used as a sensitizer. DWCNTs are applied to substitute for platinum as counter-electrode materials. Morphological and electrochemical properties of the formed counter electrodes are investigated by scanning electronic microscopy and electrochemical impedance spectroscopy, respectively. The electronic and ionic processes in platinum and DWCNT-based DSCs are analyzed and discussed. The catalytic activity and DSC performance of DWCNTs and Pt are compared. A conversion efficiency of 6.07% has been obtained for DWCNT counter-electrode DSCs. This efficiency is comparable to that of platinum counter-electrode-based devices.  相似文献   

14.
Tin oxide (SnO2) is the most attractive alternative to titanium oxide (TiO2) with the aim of identifying a more positive conduction band material for dye-sensitized solar cells (DSCs). This study puts forward a protocol based on grinding, sonication, and centrifuge to generate transparent SnO2 pastes to minimize light reflectance losses from the metal oxide. Under optimized conditions, a highly transparent film with substantially enhanced light penetration depth through active layer SnO2 is realized for efficient light harvesting from two different commercially available powders (18 and 35 nm nanoparticle sizes). A ruthenium sensitizer ( B11 ) and two organic sensitizers ( NL3 and MK2 ) are shown to achieve higher or comparable photocurrent densities with SnO2 relative to standard TiO2-based DSCs. SnO2-based DSCs show minimum recombination losses, comparable charge collection efficiencies, and minimal photovoltage losses relative to TiO2 DSCs. Thus, the option of a transparent metal oxide, which can facilitate high photocurrents (>16 mA cm−2 observed) and lower recombination rates than TiO2 is an attractive material for DSC applications.  相似文献   

15.
对电极在染料敏化太阳能电池(DSCs)中主要起催化氧化还原反应及收集电荷的作用,铂对电极常用的制备方法为磁控溅射法,但其成本较高,制备条件苛刻. 本文通过引入低成本的表面活性剂Span-85,所制得的铂对电极的附着力、透光率和均匀性显著改善,实现了面积可控,与两步浸泡法和旋涂热解法制备的对电极在DSCs中的光电转换效率分别为7.30%,6.96%和7.03%. 紫外-可见吸收光谱、扫描电镜和附着力测试等结果表明,(1)添加表面活性剂有利于增加附着力及改善透光率和均匀性;(2)使用该法制备的Pt/FTO对电极的透光率与两步浸泡法制作的相同,且铂粒子分布更加均匀. 电化学阻抗图谱、塔菲尔极化曲线和循环伏安曲线结果表明,丝网印刷方法制备的Pt/FTO对电极具有更加优异的催化性能,且该法更有利于降低其生产成本和大规模生产.  相似文献   

16.
The back contact dye solar cells (BCDSCs), in which the TCO(Transparent Conductive oxide) is omitted, have a potential for use of intact low-cost general substrates such as glass, metal foil and papers. Herein, we introduce a facile manufacturing method of a Ti back contact electrode (Ti BCE) for the BCDSCs. We found that the polylinkers such as poly(butyl titanate) have a strong binding property to make Ti particles connect one with another. A porous Ti film, which consists of Ti particles of ≤ 10? size connected by a small amount of polylinkers, has an excellent low sheet resistance of 10 Ω sq-1 for an efficient electron collection for DSCs. This Ti BCE can be prepared by using a facile printing method under normal ambient conditions. Conjugating the new back contact electrode technology with the traditional monolithic structure using the carbon counter electrode, we fabricated TCO-less DSCs. These four-layer structurered DSCs consist of a dye-adsorbed nanocrystalline TiO2 film on a glass substrate, a porous Ti back contact layer, a ZrO2 spacer layer and a carbon counter electrode in a layered structure. Under AM 1.5 G and 100 mWcm?2 simulated sunlight illumination, the four-layer structurered DSCs with N719 dyes and I-/I3-redox electrolytes achieved PCEs up to 5.21 %.  相似文献   

17.
Novel phenoxazine dyes are successfully introduced as sensitizers into dye‐sensitized solar cells (DSCs) with cobalt‐based electrolyte. In sensitizers with triphenylamine (TPA) groups recombination from electrons in the TiO2 conduction band to the cobalt(III) species is suppressed. The effect of the steric properties of the phenoxazine sensitizers on the overall device performance and on recombination and regeneration processes is compared. Optimized DSCs sensitized with IB2 having two TPA groups in combination with tris(2,2′‐bipyridyl) cobalt(II/III) yield efficiencies of 6.3 %, similar to that of IB3 , which is equipped with mutiple alkoxy groups. TH310 with only one TPA group gives lower efficiency and open circuit voltage, while IB1 without TPA groups performs even worse. These results demonstrate that both TPA groups on the IB2 are needed for an efficient blocking effect. These results reveal a possible new role for TPA units in DSC sensitizer design.  相似文献   

18.
Dye-sensitized solar cells (DSCs) using solid-state hole conductor, poly(3,4-ethylenedioxythiophene) (PEDOT), were fabricated using in-situ photoelectrochemical polymerization giving short-circuit photocurrent density of 3.20 mA cm-2, open-circuit voltage of 0.77 V, and fill factor of 0.50, and the resulting overall conversion efficiency of 1.25% on average under air mass 1.5 conditions. Furthermore, the electron transport properties of the DSCs based on PEDOT (PEDOT/DSCs) were analyzed using light intensity modulation induced photocurrent and photovoltage decay (SLIM-PCV) measurements and electrochemical impedance spectroscopy (EIS) measurements, and then compared to those of the DSCs based on organic liquid electrolyte containing I-/I3- as redox couple (liquid iodide/iodine electrolyte-DSCs, iodide/DSCs for short). The effective filling of PEDOT in the mesopores of dyed TiO2 layers is an important key to achieve the respectable conversion efficiency of PEDOT/DSCs that is comparable with iodide/DSCs.  相似文献   

19.
We prepared a new organic electrolyte by the reaction among acetylacetone, pyridine and iodine in 3-methoxypropionitrile. The UV–Visible spectra, conductivity measurement and ESI mass spectra were used to study this electrolyte. It was suggested that the quaternization reaction of pyridine took place in this electrolyte solution and two kinds of pyridinium iodide were formed. The efficiency of dye-sensitized solar cells (DSCs) using this electrolyte reaches 6.72%, which is higher than that of DSCs using LiI electrolyte and methylpropylimidazolium iodide electrolyte. It implies that these pyridinium iodides are effective alternative component of iodide for the electrolytes of DSCs. As this organic iodide electrolyte was in situ synthesized based on iodine instead of alkyl iodide, it will be cost-effective and facilitative for the production of DSCs.  相似文献   

20.
Nanostructured ZnO photoelectrodes were synthesized on SnO2:F (FTO) glass substrate coated with sol–gel based ZnO seed layer via hydrothermal route at various deposition times: 30, 60, 90 and 180 min. Ruthenium based dye and carbon counter electrode were used for the fabrication of dye-sensitized solar cells (DSCs). Interestingly, nanolipsticks structures were found with low deposition times, where two dissimilar nanorods (111 and 165 nm) attached together. The number of nanolipsticks structures decreased and nanorods increased with increase of deposition time. The DSCs based on ZnO nanorods for 180 min, shows the maximum efficiency, 1.04% at 100 mW/cm2 light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号