首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Let M be a stratum of a compact stratified space A. It is equipped with a general adapted metric g, which is slightly more general than the adapted metrics of Nagase and Brasselet–Hector–Saralegi. In particular, g has a general type, which is an extension of the type of an adapted metric. A restriction on this general type is assumed, and then, g is called good. We consider the maximum/minimum ideal boundary condition, \(d_{\mathrm{max/min}}\), of the compactly supported de Rham complex on M, in the sense of Brüning–Lesch. Let \(H^*_{\mathrm{max/min}}(M)\) and \(\Delta _{\mathrm{max/min}}\) denote the cohomology and Laplacian of \(d_{\mathrm{max/min}}\). The first main theorem states that \(\Delta _{\mathrm{max/min}}\) has a discrete spectrum satisfying a weak form of the Weyl’s asymptotic formula. The second main theorem is a version of Morse inequalities using \(H_{\mathrm{max/min}}^*(M)\) and what we call rel-Morse functions. An ingredient of the proofs of both theorems is a version for \(d_{\mathrm{max/min}}\) of the Witten’s perturbation of the de Rham complex. Another ingredient is certain perturbation of the Dunkl harmonic oscillator previously studied by the authors using classical perturbation theory. The condition on g to be good is general enough in the following sense. Assume that A is a stratified pseudomanifold, and consider its intersection homology \(I^{\bar{p}}H_*(A)\) with perversity \(\bar{p}\); in particular, the lower and upper middle perversities are denoted by \(\bar{m}\) and \(\bar{n}\), respectively. Then, for any perversity \(\bar{p}\le \bar{m}\), there is an associated good adapted metric on M satisfying the Nagase isomorphism \(H^r_{\mathrm{max}}(M)\cong I^{\bar{p}}H_r(A)^*\) (\(r\in \mathbb {N}\)). If M is oriented and \(\bar{p}\ge \bar{n}\), we also get \(H^r_{\mathrm{min}}(M)\cong I^{\bar{p}}H_r(A)\). Thus our version of the Morse inequalities can be described in terms of \(I^{\bar{p}}H_*(A)\).  相似文献   

2.
Let \(G{/}H\) be a compact homogeneous space, and let \(\hat{g}_0\) and \(\hat{g}_1\) be G-invariant Riemannian metrics on \(G/H\). We consider the problem of finding a G-invariant Einstein metric g on the manifold \(G/H\times [0,1]\) subject to the constraint that g restricted to \(G{/}H\times \{0\}\) and \(G/H\times \{1\}\) coincides with \(\hat{g}_0\) and \(\hat{g}_1\), respectively. By assuming that the isotropy representation of \(G/H\) consists of pairwise inequivalent irreducible summands, we show that we can always find such an Einstein metric.  相似文献   

3.
We study actions of the symmetric group S4 on K3 surfaces X that satisfy the following condition: there exists an equivariant birational contraction \(\bar r:X \to \bar X\) to a K3 surface \(\bar X\) with ADE singularities such that the quotient space \(\bar X\)/S4 is isomorphic to P2. We prove that up to smooth equivariant deformations there exist exactly 15 such actions of the group S4 on K3 surfaces, and that these actions are realized as actions of the Galois groups on the Galoisations \(\bar X\) of the dualizing coverings of the plane which are associated with plane rational quartics without A4, A6, and E6 singularities as their singular points.  相似文献   

4.
Given a complete ortho-normal system  = (0, 1, 2, . . .) of L2H(D), the space of holomorphic and absolutely square integrable functions in the bounded domain D of Cn, we construct a holomorphic imbedding ι : D →■(n, ∞), the complex infinite dimensional Grassmann manifold of rank n. It is known that in ■(n, ∞) there are n closed (μ, μ)-forms τμ (μ = 1, . . . , n) which are invariant under the holomorphic isometric automorphism of ■(n, ∞) and generate algebraically all the harmonic differential forms of ...  相似文献   

5.
Let \(\mathfrak g\) be a semisimple Lie algebra over a field \(\mathbb K\), \(\text{char}\left( \mathbb{K} \right)=0\), and \(\mathfrak g_1\) a subalgebra reductive in \(\mathfrak g\). Suppose that the restriction of the Killing form B of \(\mathfrak g\) to \(\mathfrak g_1 \times \mathfrak g_1\) is nondegenerate. Consider the following statements: ( 1) For any Cartan subalgebra \(\mathfrak h_1\) of \(\mathfrak g_1\) there is a unique Cartan subalgebra \(\mathfrak h\) of \(\mathfrak g\) containing \(\mathfrak h_1\); ( 2) \(\mathfrak g_1\) is self-normalizing in \(\mathfrak g\); ( 3) The B-orthogonal \(\mathfrak p\) of \(\mathfrak g_1\) in \(\mathfrak g\) is simple as a \(\mathfrak g_1\)-module for the adjoint representation. We give some answers to this natural question: For which pairs \((\mathfrak g,\mathfrak g_1)\) do ( 1), ( 2) or ( 3) hold? We also study how \(\mathfrak p\) in general decomposes as a \(\mathfrak g_1\)-module, and when \(\mathfrak g_1\) is a maximal subalgebra of \(\mathfrak g\). In particular suppose \((\mathfrak g,\sigma )\) is a pair with \(\mathfrak g\) as above and σ its automorphism of order m. Assume that \(\mathbb K\) contains a primitive m-th root of unity. Define \(\mathfrak g_1:=\mathfrak g^{\sigma}\), the fixed point algebra for σ. We prove the following generalization of a well known result for symmetric Lie algebras, i.e., for m=2: (a) \((\mathfrak g,\mathfrak g_1)\) satisfies ( 1); (b) For m prime, \((\mathfrak g,\mathfrak g_1)\) satisfies ( 2).  相似文献   

6.
Let \((M^3,g,e^{-f}d\mu _M)\) be a compact three-dimensional smooth metric measure space with nonempty boundary. Suppose that M has nonnegative Bakry–Émery Ricci curvature and the boundary \(\partial M\) is strictly f-mean convex. We prove that there exists a properly embedded smooth f-minimal surface \(\Sigma \) in M with free boundary \(\partial \Sigma \) on \(\partial M\). If we further assume that the boundary \(\partial M\) is strictly convex, then we prove that \(M^3\) is diffeomorphic to the 3-ball \(B^3\), and a compactness theorem for the space of properly embedded f-minimal surfaces with free boundary in such \((M^3,g,e^{-f}d\mu _M)\), when the topology of these f-minimal surfaces is fixed.  相似文献   

7.
Let S be a semigroup, and \(\mathbb {F}\) a field of characteristic \(\ne 2\). If the pair \(f,g:S \rightarrow \mathbb {F}\) is a solution of Wilson’s \(\mu \)-functional equation such that \(f \ne 0\), then g satisfies d’Alembert’s \(\mu \)-functional equation.  相似文献   

8.
Let \(\mathcal {F}_{0}=\{f_{i}\}_{i\in \mathbb {I}_{n_{0}}}\) be a finite sequence of vectors in \(\mathbb {C}^{d}\) and let \(\mathbf {a}=(a_{i})_{i\in \mathbb {I}_{k}}\) be a finite sequence of positive numbers, where \(\mathbb {I}_{n}=\{1,\ldots , n\}\) for \(n\in \mathbb {N}\). We consider the completions of \(\mathcal {F}_{0}\) of the form \(\mathcal {F}=(\mathcal {F}_{0},\mathcal {G})\) obtained by appending a sequence \(\mathcal {G}=\{g_{i}\}_{i\in \mathbb {I}_{k}}\) of vectors in \(\mathbb {C}^{d}\) such that ∥g i 2 = a i for \(i\in \mathbb {I}_{k}\), and endow the set of completions with the metric \(d(\mathcal {F},\tilde {\mathcal {F}}) =\max \{ \,\|g_{i}-\tilde {g}_{i}\|: \ i\in \mathbb {I}_{k}\}\) where \(\tilde {\mathcal {F}}=(\mathcal {F}_{0},\,\tilde {\mathcal {G}})\). In this context we show that local minimizers on the set of completions of a convex potential P φ , induced by a strictly convex function φ, are also global minimizers. In case that φ(x) = x 2 then P φ is the so-called frame potential introduced by Benedetto and Fickus, and our work generalizes several well known results for this potential. We show that there is an intimate connection between frame completion problems with prescribed norms and frame operator distance (FOD) problems. We use this connection and our results to settle in the affirmative a generalized version of Strawn’s conjecture on the FOD.  相似文献   

9.
Given a model \(\mathcal {M}\) of set theory, and a nontrivial automorphism j of \(\mathcal {M}\), let \(\mathcal {I}_{\mathrm {fix}}(j)\) be the submodel of \(\mathcal {M}\) whose universe consists of elements m of \(\mathcal {M}\) such that \(j(x)=x\) for every x in the transitive closure of m (where the transitive closure of m is computed within \(\mathcal {M}\)). Here we study the class \(\mathcal {C}\) of structures of the form \(\mathcal {I}_{\mathrm {fix}}(j)\), where the ambient model \(\mathcal {M}\) satisfies a frugal yet robust fragment of \(\mathrm {ZFC}\) known as \(\mathrm {MOST}\), and \(j(m)=m\) whenever m is a finite ordinal in the sense of \(\mathcal {M}.\) Our main achievement is the calculation of the theory of \(\mathcal {C}\) as precisely \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\). The following theorems encapsulate our principal results: Theorem A. Every structure in \(\mathcal {C}\) satisfies \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm { Collection}\). Theorem B. Each of the following three conditions is sufficient for a countable structure \(\mathcal {N}\) to be in \(\mathcal {C}\):(a) \(\mathcal {N}\) is a transitive model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(b) \(\mathcal {N}\) is a recursively saturated model of \(\mathrm {MOST+\Delta }_{0}^{\mathcal {P}}\)-\(\mathrm {Collection}\).(c) \(\mathcal {N}\) is a model of \(\mathrm {ZFC}\). Theorem C. Suppose \(\mathcal {M}\) is a countable recursively saturated model of \(\mathrm {ZFC}\) and I is a proper initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is closed under exponentiation and contains \(\omega ^\mathcal {M}\) . There is a group embedding \(j\longmapsto \check{j}\) from \(\mathrm {Aut}(\mathbb {Q})\) into \(\mathrm {Aut}(\mathcal {M})\) such that I is the longest initial segment of \(\mathrm {Ord}^{\mathcal {M}}\) that is pointwise fixed by \(\check{j}\) for every nontrivial \(j\in \mathrm {Aut}(\mathbb {Q}).\) In Theorem C, \(\mathrm {Aut}(X)\) is the group of automorphisms of the structure X, and \(\mathbb {Q}\) is the ordered set of rationals.  相似文献   

10.
The space of real Borel measures \(\mathcal {M}(S)\) on a metric space S under the flat norm (dual bounded Lipschitz norm), ordered by the cone \(\mathcal {M}_+(S)\) of nonnegative measures, is considered from an ordered normed vector space perspective in order to apply the well-developed theory of this area. The flat norm is considered in place of the variation norm because subsets of \(\mathcal {M}_+(S)\) are compact and semiflows on \(\mathcal {M}_+(S)\) are continuous under much weaker conditions. In turn, the flat norm offers new challenges because \(\mathcal {M}(S)\) is rarely complete and \(\mathcal {M}_+(S)\) is only complete if S is complete. As illustrations serve the eigenvalue problem for bounded additive and order-preserving homogeneous maps on \(\mathcal {M}_+(S)\) and continuous semiflows. Both topics prepare for a dynamical systems theory on \(\mathcal {M}_+(S)\).  相似文献   

11.
A fixed point compactification of a locally compact noncompact group G is a faithful semigroup compactification S such that \(ap=pa=p\) for all \(p\in S\setminus G\) and \(a\in G\). Since the right translations are continuous, the remainder of a fixed point compactification is a right zero semigroup. Among all fixed point compactifications of G there is a largest one, denoted \(\theta G\). We show that if G is \(\sigma \)-compact, then \(\theta G\setminus G\) contains a copy of \(\beta \omega \setminus \omega \). In contrast, if G is not \(\sigma \)-compact, then \(\theta G\) is the one-point compactification.  相似文献   

12.
We introduce and study the first-order Generic Vopěnka’s Principle, which states that for every definable proper class of structures \(\mathcal {C}\) of the same type, there exist \(B\ne A\) in \(\mathcal {C}\) such that B elementarily embeds into A in some set-forcing extension. We show that, for \(n\ge 1\), the Generic Vopěnka’s Principle fragment for \(\Pi _n\)-definable classes is equiconsistent with a proper class of n-remarkable cardinals. The n-remarkable cardinals hierarchy for \(n\in \omega \), which we introduce here, is a natural generic analogue for the \(C^{(n)}\)-extendible cardinals that Bagaria used to calibrate the strength of the first-order Vopěnka’s Principle in Bagaria (Arch Math Logic 51(3–4):213–240, 2012). Expanding on the theme of studying set theoretic properties which assert the existence of elementary embeddings in some set-forcing extension, we introduce and study the weak Proper Forcing Axiom, \(\mathrm{wPFA}\). The axiom \(\mathrm{wPFA}\) states that for every transitive model \(\mathcal M\) in the language of set theory with some \(\omega _1\)-many additional relations, if it is forced by a proper forcing \(\mathbb P\) that \(\mathcal M\) satisfies some \(\Sigma _1\)-property, then V has a transitive model \(\bar{\mathcal M}\), satisfying the same \(\Sigma _1\)-property, and in some set-forcing extension there is an elementary embedding from \(\bar{\mathcal M}\) into \(\mathcal M\). This is a weakening of a formulation of \(\mathrm{PFA}\) due to Claverie and Schindler (J Symb Logic 77(2):475–498, 2012), which asserts that the embedding from \(\bar{\mathcal M}\) to \(\mathcal M\) exists in V. We show that \(\mathrm{wPFA}\) is equiconsistent with a remarkable cardinal. Furthermore, the axiom \(\mathrm{wPFA}\) implies \(\mathrm{PFA}_{\aleph _2}\), the Proper Forcing Axiom for antichains of size at most \(\omega _2\), but it is consistent with \(\square _\kappa \) for all \(\kappa \ge \omega _2\), and therefore does not imply \(\mathrm{PFA}_{\aleph _3}\).  相似文献   

13.
We show that for an inverse semigroup S with the set idempotents E acting on S trivially from left and by multiplication from right, any bounded module derivation from \(\ell ^1(S)\) to \(({\ell ^1(S)}/{J})^*=J^{\perp }\) is inner, where J is the closed ideal generated by elements of the form \(\delta _{set}-\delta _{st}\) with \(s,t\in S\) and \(e\in E\).  相似文献   

14.
Let (S,ω) be a weighted abelian semigroup, let M ω (S) be the semigroup of ω-bounded multipliers of S, and let \(\mathcal {A}\) be a strictly convex commutative Banach algebra with identity. It is shown that T is an onto isometric multiplier of \(\ell ^{1}(S,\omega , \mathcal {A})\) if and only if there exists an invertible σM ω (S), a unitary point \(a \in \mathcal {A}\), and a k>0 such that \(T(f)= ka{\sum }_{x \in S} f(x)\delta _{\sigma (x)}\) for each \(f={\sum }_{x \in S}f(x)\delta _{x} \in \ell ^{1}(S,\omega ,\mathcal {A})\). It is also shown that an isomorphism from \(\ell ^{1}(S_{1},\omega _{1},\mathcal {A})\) onto \(\ell ^{1}(S_{2},\omega _{2}, \mathcal {B})\) induces an isomorphism from \(M(\ell ^{1}(S_{1},\omega _{1},\mathcal {A}))\), the set of all multipliers of \(\ell ^{1}(S_{1},\omega _{1},\mathcal {A})\), onto \(M(\ell ^{1}(S_{2},\omega _{2},\mathcal {B}))\).  相似文献   

15.
If (M,?) is a manifold with a symmetric linear connection, then T*M can be endowed with the natural Riemann extension \(\bar g\) (O. Kowalski and M. Sekizawa (2011), M. Sekizawa (1987)). Here we continue to study the harmonicity with respect to \(\bar g\) initiated by C. L.Bejan and O.Kowalski (2015). More precisely, we first construct a canonical almost para-complex structure \(\mathcal{P}\) on (T*M, \(\bar g\)) and prove that \(\mathcal{P}\) is harmonic (in the sense of E.Garciá-Río, L.Vanhecke and M. E.Vázquez-Abal (1997)) if and only if \(\bar g\) reduces to the classical Riemann extension introduced by E.M. Patterson and A.G. Walker (1952).  相似文献   

16.
Let \(\varGamma \) be a distance-semiregular graph on Y, and let \(D^Y\) be the diameter of \(\varGamma \) on Y. Let \(\varDelta \) be the halved graph of \(\varGamma \) on Y. Fix \(x \in Y\). Let T and \(T'\) be the Terwilliger algebras of \(\varGamma \) and \(\varDelta \) with respect to x, respectively. Assume, for an integer i with \(1 \le 2i \le D^Y\) and for \(y,z \in \varGamma _{2i}(x)\) with \(\partial _{\varGamma }(y,z)=2\), the numbers \(|\varGamma _{2i-1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) and \(|\varGamma _{2i+1}(x) \cap \varGamma (y) \cap \varGamma (z)|\) depend only on i and do not depend on the choice of y, z. The first goal in this paper is to show the relations between T-modules of \(\varGamma \) and \(T'\)-modules of \(\varDelta \). Assume \(\varGamma \) is the incidence graph of the Hamming graph H(Dn) on the vertex set Y and the set \({\mathcal {C}}\) of all maximal cliques. Then, \(\varGamma \) satisfies above assumption and \(\varDelta \) is isomorphic to H(Dn). The second goal is to determine the irreducible T-modules of \(\varGamma \). For each irreducible T-module W, we give a basis for W the action of the adjacency matrix on this basis and we calculate the multiplicity of W.  相似文献   

17.
The total space \({\mathfrak M} \approx {\mathbb H}_1 \times S^1\) of the canonical circle bundle over the 3-dimensional Heisenberg group \({\mathbb H}_1\) is a space–time with the Lorentzian metric \(F_{\theta _0}\) (Fefferman’s metric) associated to the canonical Tanaka–Webster flat contact form \(\theta _0\) on \({\mathbb H}_1\). The matter and energy content of \(\mathfrak M\) is described by the energy-momentum tensor \({T}_{\mu \nu }\) (the trace-less Ricci tensor of \(F_{\theta _0}\)) as an effect of the non flat nature of Feferman’s metric \(F_{\theta _0}\). We study the gravitational field equations \(R_{\mu \nu } - (1/2) \, R \, g_{\mu \nu } = {T}_{\mu \nu }\) on \({\mathfrak M}\). We consider the first order perturbation \(g = F_{\theta _0} + \epsilon \, h\), \(\epsilon<< 1\), and linearize the field equations about \(F_{\theta _0}\). We determine a Lorentzian metric g on \({\mathfrak M}\) which solves the linearized field equations corresponding to a diagonal perturbation h.  相似文献   

18.
We define NLC\(_k^{\mathcal{F}}\) to be the restriction of the class of graphs NLC k , where relabelling functions are exclusively taken from a set \(\mathcal{F}\) of functions from {1,...,k} into {1,...,k}. We characterize the sets of functions \(\mathcal{F}\) for which NLC\(_k^{\mathcal{F}}\) is well-quasi-ordered by the induced subgraph relation ≤? i . Precisely, these sets \(\mathcal{F}\) are those which satisfy that for every \(f,g\in \mathcal{F}\), we have Im(f?°?g)?=?Im(f) or Im(g?°?f)?=?Im(g). To obtain this, we show that words (or trees) on \(\mathcal{F}\) are well-quasi-ordered by a relation slightly more constrained than the usual subword (or subtree) relation. A class of graphs is n-well-quasi-ordered if the collection of its vertex-labellings into n colors forms a well-quasi-order under ≤? i , where ≤? i respects labels. Pouzet (C R Acad Sci, Paris Sér A–B 274:1677–1680, 1972) conjectured that a 2-well-quasi-ordered class closed under induced subgraph is in fact n-well-quasi-ordered for every n. A possible approach would be to characterize the 2-well-quasi-ordered classes of graphs. In this respect, we conjecture that such a class is always included in some well-quasi-ordered NLC\(_k^{\mathcal{F}}\) for some family \(\mathcal{F}\). This would imply Pouzet’s conjecture.  相似文献   

19.
Let \({\phi : M \to R^{n+p}(c)}\) be an n-dimensional submanifold in an (n + p)-dimensional space form R n+p(c) with the induced metric g. Willmore functional of \({\phi}\) is \({W(\phi) = \int_{M}(S - nH^{2})^{n/2}dv}\) , where \({S = \sum_{\alpha,i, j}(h^{\alpha}_{ij} )^2}\) is the square of the length of the second fundamental form, H is the mean curvature of M. The Weyl functional of (M, g) is \({\nu(g) = \int_{M}|W_{g}|^{n/2}dv}\) , where \({|W_{g}|^{2} = \sum_{i, j,k,l} W^{2}_{ijkl}}\) and W ijkl are the components of the Weyl curvature tensor W g of (M, g). In this paper, we discover an inequality relation between Willmore functional \({W(\phi)}\) and Weyl funtional ν(g).  相似文献   

20.
We denote by \(\mathcal {H}_{d,g,r}\) the Hilbert scheme of smooth curves, which is the union of components whose general point corresponds to a smooth irreducible and non-degenerate curve of degree d and genus g in \(\mathbb {P}^r\). In this note, we show that any non-empty \(\mathcal {H}_{g+2,g,4}\) is irreducible, generically smooth, and has the expected dimension \(4g+11\) without any restriction on the genus g. Our result augments the irreducibility result obtained earlier by Iliev (Proc Am Math Soc 134:2823–2832, 2006), in which several low genus \(g\le 10\) cases have been left untreated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号