首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph G is called the cop number of G. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant C, the cop number of every connected graph G is at most . In a separate paper, we showed that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph. The result was obtained by showing that the conjecture holds for a general class of graphs with some specific expansion‐type properties. In this paper, this deterministic result is used to show that the conjecture holds asymptotically almost surely for random d‐regular graphs when d = d(n) ≥ 3.  相似文献   

2.
We theoretically analyze the ‘cops and robber’ game for the first time in a multidimensional grid. It is shown that in an n-dimensional grid, at least n cops are necessary if one wants to catch the robber for all possible initial configurations. We also present a set of cop strategies for which n cops are provably sufficient to catch the robber. Further, we revisit the game in a two-dimensional grid and provide an independent proof of the fact that the robber can be caught even by a single cop under certain conditions.  相似文献   

3.
In this paper, we study the vertex pursuit game of Cops and Robbers where cops try to capture a robber on the vertices of the graph. The minimum number of cops required to win on a given graph G is the cop number of G. We present asymptotic results for the game of Cops and Robber played on a random graph G(n,p) for a wide range of p = p(n). It has been shown that the cop number as a function of an average degree forms an intriguing zigzag shape. © 2010 Wiley Periodicals, Inc. Random Struct. Alg., 2010  相似文献   

4.
We consider the two-player, complete information game of Cops and Robber played on undirected, finite, reflexive graphs. A number of cops and one robber are positioned on vertices and take turns in sliding along edges. The cops win if, after a move, a cop and the robber are on the same vertex. The minimum number of cops needed to catch the robber on a graph is called the cop number of that graph. Let c(g) be the supremum over all cop numbers of graphs embeddable in a closed orientable surface of genus g, and likewise ${\tilde c(g)}$ for non-orientable surfaces. It is known (Andreae, 1986) that, for a fixed surface, the maximum over all cop numbers of graphs embeddable in this surface is finite. More precisely, Quilliot (1985) showed that c(g) ≤ 2g + 3, and Schröder (2001) sharpened this to ${c(g)\le \frac32g + 3}$ . In his paper, Andreae gave the bound ${\tilde c(g) \in O(g)}$ with a weak constant, and posed the question whether a stronger bound can be obtained. Nowakowski & Schröder (1997) obtained ${\tilde c(g) \le 2g+1}$ . In this short note, we show ${\tilde c(g) \leq c(g-1)}$ , for any g ≥ 1. As a corollary, using Schröder’s results, we obtain the following: the maximum cop number of graphs embeddable in the projective plane is 3, the maximum cop number of graphs embeddable in the Klein Bottle is at most 4, ${\tilde c(3) \le 5}$ , and ${\tilde c(g) \le \frac32g + 3/2}$ for all other g.  相似文献   

5.
In the game of cops and robbers on graphs, the cops and the robber are allowed to pass their turn if they are located on a looped vertex. This paper explores the effect of loops on the cop number and the capture time. We provide examples of graphs where the cop number almost doubles when the loops are removed, graphs where the cop number decreases when the loops are removed, graphs where the capture time is quadratic in the number of vertices and copwin graphs where the cop needs to move away from the robber in optimal play.  相似文献   

6.
Aigner and Fromme initiated the systematic study of the cop number of a graph by proving the elegant and sharp result that in every connected planar graph, three cops are sufficient to win a natural pursuit game against a single robber. This game, introduced by Nowakowski and Winkler, is commonly known as Cops and Robbers in the combinatorial literature. We extend this study to directed planar graphs, and establish separation from the undirected setting. We exhibit a geometric construction that shows that a sophisticated robber strategy can indefinitely evade three cops on a particular strongly connected planar‐directed graph.  相似文献   

7.
In the game of Cops and Robbers, a team of cops attempts to capture a robber on a graph G. All players occupy vertices of G. The game operates in rounds; in each round the cops move to neighboring vertices, after which the robber does the same. The minimum number of cops needed to guarantee capture of a robber on G is the cop number of G, denoted c(G), and the minimum number of rounds needed for them to do so is the capture time. It has long been known that the capture time of an n-vertex graph with cop number k is O(nk+1). More recently, Bonato et al. (2009) and Gaven?iak (2010) showed that for k=1, this upper bound is not asymptotically tight: for graphs with cop number 1, the cop can always win within n?4 rounds. In this paper, we show that the upper bound is tight when k2: for fixed k2, we construct arbitrarily large graphs G having capture time at least V(G)40k4k+1.In the process of proving our main result, we establish results that may be of independent interest. In particular, we show that the problem of deciding whether k cops can capture a robber on a directed graph is polynomial-time equivalent to deciding whether k cops can capture a robber on an undirected graph. As a corollary of this fact, we obtain a relatively short proof of a major conjecture of Goldstein and Reingold (1995), which was recently proved through other means (Kinnersley, 2015). We also show that n-vertex strongly-connected directed graphs with cop number 1 can have capture time Ω(n2), thereby showing that the result of Bonato et al. (2009) does not extend to the directed setting.  相似文献   

8.
We consider the game of Cops and Robbers played on finite and countably infinite connected graphs. The length of games is considered on cop-win graphs, leading to a new parameter, the capture time of a graph. While the capture time of a cop-win graph on n vertices is bounded above by n−3, half the number of vertices is sufficient for a large class of graphs including chordal graphs. Examples are given of cop-win graphs which have unique corners and have capture time within a small additive constant of the number of vertices. We consider the ratio of the capture time to the number of vertices, and extend this notion of capture time density to infinite graphs. For the infinite random graph, the capture time density can be any real number in [0,1]. We also consider the capture time when more than one cop is required to win. While the capture time can be calculated by a polynomial algorithm if the number k of cops is fixed, it is NP-complete to decide whether k cops can capture the robber in no more than t moves for every fixed t.  相似文献   

9.
The games considered are mixtures of Searching and Cops and Robber. The cops have partial information provided via witnesses who report “sightings” of the robber. The witnesses are able to provide information about the robber’s position but not the direction in which he is moving. The robber has perfect information. In the case when sightings occur at regular intervals, we present a recognition theorem for graphs on which a single cop suffices to guarantee a win. In a special case, this recognition theorem provides a characterization.  相似文献   

10.
In the game of cops and robber, the cops try to capture a robber moving on the vertices of the graph. The minimum number of cops required to win on a given graph G is called the cop number of G. The biggest open conjecture in this area is the one of Meyniel, which asserts that for some absolute constant C, the cop number of every connected graph G is at most . In this paper, we show that Meyniel's conjecture holds asymptotically almost surely for the binomial random graph , which improves upon existing results showing that asymptotically almost surely the cop number of is provided that for some . We do this by first showing that the conjecture holds for a general class of graphs with some specific expansion‐type properties. This will also be used in a separate paper on random d‐regular graphs, where we show that the conjecture holds asymptotically almost surely when . © 2015 Wiley Periodicals, Inc. Random Struct. Alg., 48, 396–421, 2016  相似文献   

11.
Consider the following game of a cop locating a robber on a connected graph. At each turn, the cop chooses a vertex of the graph to probe and receives the distance from the probe to the robber. If she can uniquely locate the robber after this probe, then she wins. Otherwise the robber may either stay put or move to any vertex adjacent to his location other than the probe vertex. The cop’s goal is to minimize the number of probes required to locate the robber, while the robber’s goal is to avoid being located. This is a synthesis of the cop and robber game with the metric dimension problem. We analyse this game for several classes of graphs, including cycles and trees.  相似文献   

12.
We consider edge critical graphs when playing cops and robber. Specifically, we look at those graphs whose copnumbers change from one to two when any edge is added, deleted, subdivided or contracted. We characterize all such sets, showing that they are empty, trees, all 2-edge-connected graphs and empty, respectively. We also consider those graphs which change from copnumber two to one when any edge is added, and give a characterization in the k-regular case.  相似文献   

13.
14.
The game cops and robbers is considered on Cayley graphs of abelian groups. It is proved that if the graph has degreed, then [(d+1)/2] cops are sufficient to catch one robber. This bound is often best possible.  相似文献   

15.
We consider the localization game played on graphs, wherein a set of cops attempt to determine the exact location of an invisible robber by exploiting distance probes. The corresponding optimization parameter for a graph G is called the localization number and is written as ζ(G). We settle a conjecture of Bosek et al by providing an upper bound on the chromatic number as a function of the localization number. In particular, we show that every graph with ζ(G) ≤ k has degeneracy less than 3k and, consequently, satisfies χ(G) ≤ 3ζ(G). We show further that this degeneracy bound is tight. We also prove that the localization number is at most 2 in outerplanar graphs, and we determine, up to an additive constant, the localization number of hypercubes.  相似文献   

16.
The game of Cops and Robbers is a very well known game played on graphs. In this paper we will show that minimum order of a graph that needs k cops to guarantee the robber’s capture is increasing in k.  相似文献   

17.
Using a fixed set of colors C, Ann and Ben color the edges of a graph G so that no monochromatic cycle may appear. Ann wins if all edges of G have been colored, while Ben wins if completing a coloring is not possible. The minimum size of C for which Ann has a winning strategy is called the game arboricity of G, denoted by Ag(G). We prove that Ag(G)?3k for any graph G of arboricity k, and that there are graphs such that Ag(G)?2k-2. The upper bound is achieved by a suitable version of the activation strategy, used earlier for the vertex coloring game. We also provide two other strategies based on induction and acyclic colorings.  相似文献   

18.
《Discrete Mathematics》2023,346(1):113162
The graph coloring game is a two-player game in which the two players properly color an uncolored vertex of G alternately. The first player wins the game if all vertices of G are colored, and the second wins otherwise. The game chromatic number of a graph G is the minimum integer k such that the first player has a winning strategy for the graph coloring game on G with k colors. There is a lot of literature on the game chromatic number of graph products, e.g., the Cartesian product and the lexicographic product. In this paper, we investigate the game chromatic number of the strong product of graphs, which is one of major graph products. In particular, we completely determine the game chromatic number of the strong product of a double star and a complete graph. Moreover, we estimate the game chromatic number of some King's graphs, which are the strong products of two paths.  相似文献   

19.
In this paper, we show that the clique-transversal number τC(G) and the clique-independence number αC(G) are equal for any distance-hereditary graph G. As a byproduct of proving that τC(G)=αC(G), we give a linear-time algorithm to find a minimum clique-transversal set and a maximum clique-independent set simultaneously for distance-hereditary graphs.  相似文献   

20.
For two given graphs G1 and G2, the Ramsey number R(G1,G2) is the smallest integer n such that for any graph G of order n, either G contains G1 or the complement of G contains G2. Let Cm denote a cycle of length m and Kn a complete graph of order n. In this paper, it is shown that R(C6,K8)=36.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号