首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A computerized infrared (IR) scanning radiometer is employed to characterize the boundary layer development over a model wing, having a Göttingen 797 cross-section, by measuring the temperature distribution over its heated surface. The Reynolds analogy is used to relate heat transfer measurements to skin friction. The results show that IR thermography is capable of rapidly detecting location and extent of transition and separation regions of the boundary layer over the whole surface of the tested model wing. Thus, the IR technique appears to be a suitable and effective diagnostic tool for aerodynamic research in wind tunnels.List of symbols c airfoil chord - c f local skin friction coefficient = 2/( V 2) - c p specific heat coefficient at constant pressure - h local convective heat transfer coefficient - Nu Nusselt number = h x/ - Nu c Nusselt number based on airfoil chord = h c/ - Pr Prandtl number c p / - Q j wall heat flux due to Joule heating - Q l heat flux loss - Re Reynolds number V x/ - Re c Reynolds number based on airfoil chord = V c/ - St Stanton number = h/c p V - T w wall temperature - T aw adiabatic wall temperature - V velocity of the free stream - x chordwise spatial coordinate - angle of attack - thermal conductivity coefficient - dynamic viscosity coefficient - mass density - wall shear stress  相似文献   

2.
Simplified nonlinear governing differential equations proposed by Berger for static cases and extended by Nash and Modeer for dynamic cases are used to analyse the title problem. Steady-state harmonic oscillations are assumed and the time variable is eliminated by a Kantorovich averaging method. The enclosure or comparison theorem of Collatz is then applied to the reduced equations to obtain the upper and lower bounds for the fundamental nonlinear frequency of simply-supported rectangular plates with linearly varying thickness. The fundamental eigenvalues are given for several taper and aspect ratios.Nomenclature a, b dimensions of plates - A i series coefficients - D Eh 3/12(1– 2) flexural rigidity - D 0 Eh 0 3 /12(1– 2) - E Young's modulus - h thickness, h 0(1+x) - h 0 thickness parameter - N x , N y stress resultants in the X and Y directions - N (N x +N y )/(1+) - P 1, P 2, ... parameters - Q 1, Q 2, ... parameters - R[X, (A/h 0)2] bounding function - t time - u, v in-plane displacements - lateral deflections of plate - X=x/a dimensionless co-ordinate - x, y rectangular co-ordinates - y n (X) series related to - thickness taper ratio - parameter in the neighbourhood of - error-function associated with differential equation - eigenvalue relating to frequency - Poisson's ra-tio - plate material specific weight - (X) function related to plate deflection - (X) admissible functions - circular frequency  相似文献   

3.
Zusammenfassung Für die Durchsatzströmung im Rohr wird mit Hilfe der klassischen hydrodynamischen Stabilitätstheorie gezeigt, daß die inkompressible Flüssigkeit zweiter Ordnungs = –pI + 2(d + 2t 1 d 2t 0 d) stabil ist gegenüber kleinen rotationssymmetrischen Störungen.
Summary For Poiseuille pipe flow it is shown by means of the classical theory of hydrodynamic stability, that the incompressible second-order fluids = –pI + 2(d + 2t 1 d 2t 0 d) is stable with respect to small disturbances of rotational symmetry.

Nomenklatur a n Koeffizienten der Reihenentwicklung - c = /k komplexe Wellengeschwindigkeit - d Deformationsgeschwindigkeitstensor - D, D dimensionsloser Deformationsgeschwindigkeitstensor (Grund- und Störtensor) - e i kovariante Basis - g Vektor der Erdbeschleunigung - I Einheitstensor - k Wellenzahl - M, O, S, Q, T Funktion vonk, Re, 0 - p, P, p Gesamt-, Grund-, Stördruck - r, (r, , z) dimensionsloser Ortsvektor (Zylinderkoordinaten) - R Rohrradius - Re =U M R/ Reynoldszahl - s(s *=s*pI) Spannungstensor (Isotroper Anteil des ) - t 0,t 1 Stoffzeiten, Parameter der Flüssigkeit zweiter Ordnung - t Zeit - u, U, u Vektor der Gesamt-, Grund-, Störgeschwindigkeit - U M Maximale Grundgeschwindigkeit - v, V, v Vektor der dimensionslosen Gesamt-, Grund-, Störgeschwindigkeit - w Rotationsgeschwindigkeitstensor - W, W Rotationsgeschwindigkeitstensor, dimensionslos (Grund-, Störtensor) - x (x r ,x ,x z ) Ortsvektor (Zylinderkoordinaten) - Viskosität - 0, 1 dimensionslose Stoffzeiten - dimensionsloser Druck - Dichte - dimensionslose Zeit - Stromfunktion, dimensionslos - komplexe Frequenz, dimensionslos - = e i /x i Nablaoperator (e i kontravariante Basis) - * Nablaoperator, dimensionslos - R, I Real-, Imaginärteil Mit 4 Abbildungen  相似文献   

4.
The Stokes flow of two immiscible fluids through a rigid porous medium is analyzed using the method of volume averaging. The volume-averaged momentum equations, in terms of averaged quantities and spatial deviations, are identical in form to that obtained for single phase flow; however, the solution of the closure problem gives rise to additional terms not found in the traditional treatment of two-phase flow. Qualitative arguments suggest that the nontraditional terms may be important when / is of order one, and order of magnitude analysis indicates that they may be significant in terms of the motion of a fluid at very low volume fractions. The theory contains features that could give rise to hysteresis effects, but in the present form it is restricted to static contact line phenomena.Roman Letters (, = , , and ) A interfacial area of the- interface contained within the macroscopic system, m2 - A e area of entrances and exits for the -phase contained within the macroscopic system, m2 - A interfacial area of the- interface contained within the averaging volume, m2 - A * interfacial area of the- interface contained within a unit cell, m2 - A e * area of entrances and exits for the-phase contained within a unit cell, m2 - g gravity vector, m2/s - H mean curvature of the- interface, m–1 - H area average of the mean curvature, m–1 - HH , deviation of the mean curvature, m–1 - I unit tensor - K Darcy's law permeability tensor, m2 - K permeability tensor for the-phase, m2 - K viscous drag tensor for the-phase equation of motion - K viscous drag tensor for the-phase equation of motion - L characteristic length scale for volume averaged quantities, m - characteristic length scale for the-phase, m - n unit normal vector pointing from the-phase toward the-phase (n = –n ) - p c p P , capillary pressure, N/m2 - p pressure in the-phase, N/m2 - p intrinsic phase average pressure for the-phase, N/m2 - p p , spatial deviation of the pressure in the-phase, N/m2 - r 0 radius of the averaging volume, m - t time, s - v velocity vector for the-phase, m/s - v phase average velocity vector for the-phase, m/s - v intrinsic phase average velocity vector for the-phase, m/s - v v , spatial deviation of the velocity vector for the-phase, m/s - V averaging volume, m3 - V volume of the-phase contained within the averaging volume, m3 Greek Letters V /V, volume fraction of the-phase - mass density of the-phase, kg/m3 - viscosity of the-phase, Nt/m2 - surface tension of the- interface, N/m - viscous stress tensor for the-phase, N/m2 - / kinematic viscosity, m2/s  相似文献   

5.
This paper describes an experimental study of the mutual interference between two spheres placed on a plane boundary. The experiment was carried out in an N. P. L. type wind-tunnel having a working section of 500×500×2000 mm3 in size at a Reynolds number of 4.74×104. The surface-pressure distributions of two spheres were measured for the various relative positions of two spheres and the drag, side-force, and lift coefficients were determined from surface-pressure distributions. The separation of the flow and the formation of vortices were observed by the method of visualization. The distributions of velocities, and turbulent intensities of the flow past two spheres were measured. The experimental results for two spheres were compared with those of a single sphere.List of symbols C D drag coefficient - C L lift coefficient - C p surface-pressure coefficient of sphere=(P-P )(qU 2 ) - C s coefficients of side force - D diameter of sphere [mm] - P static pressure [Pa] - P static pressure in free stream [Pa] - Re Reynolds number= DU/v - S spacing between the centers of two adjoining spheres in plane view [mm] - U time-mean velocity in X-direction [m/s] - [m/s] free stream velocity [m/s] - u, v, w X, Y and Z-components of velocity fluctuation [m/s] - X, Y, Z coordinate axes with origin at the bottom center of test sphere, X, Y, Z axis being taken in the streamwise, lateral and vertical directions respectively [mm] (Fig. 1) - latitude angle [°] - longitude angle [°] - angle between the line connected with the centers of two spheres and wind direction [°] (Fig. 2) - kinematic viscosity of air [m2/s] - density of air [N/m3] This paper was presented at the 10th Symposium on Turbulence, University of Missouri-Rolla, Sept. 22–24, 1986  相似文献   

6.
In this work, we make use of numerical experiments to explore our original theoretical analysis of two-phase flow in heterogeneous porous media (Quintard and Whitaker, 1988). The calculations were carried out with a two-region model of a stratified system, and the parameters were chosen be consistent with practical problems associated with groundwater flows and petroleum reservoir recovery processes. The comparison between theory (the large-scaled averaged equations) and experiment (numerical solution of the local volume averaged equations) has allowed us to identify conditions for which the quasi-static theory is acceptable and conditions for which a dynamic theory must be used. Byquasi-static we mean the following: (1) The local capillary pressure,everywhere in the averaging volume, can be set equal to the large-scale capillary pressure evaluated at the centroid of the averaging volume and (2) the large-scale capillary pressure is given by the difference between the large-scale pressures in the two immiscible phases, and is therefore independent of gravitational effects, flow effects and transient effects. Bydynamic, we simply mean a significant departure from the quasi-static condition, thus dynamic effects can be associated with gravitational effects, flow effects and transient effects. To be more precise about the quasi-static condition we need to refer to the relation between the local capillary pressure and the large-scale capillary pressure derived in Part I (Quintard and Whitaker, 1990). Herep c ¦y represents the local capillary pressure evaluated at a positiony relative to the centroid of the large-scale averaging volume, and {p c x represents the large-scale capillary pressure evaluated at the centroid.In addition to{p c } c being evaluated at the centroid, all averaged terms on the right-hand side of Equation (1) are evaluated at the centroid. We can now write the equations describing the quasi-static condition as , , This means that the fluids within an averaging volume are distributed according to the capillary pressure-saturation relationwith the capillary pressure held constant. It also means that the large-scale capillary pressure is devoid of any dynamic effects. Both of these conditions represent approximations (see Section 6 in Part I) and one of our main objectives in this paper is to learn something about the efficacy of these approximations. As a secondary objective we want to explore the influence of dynamic effects in terms of our original theory. In that development only the first four terms on the right hand side of Equation (1) appeared in the representation for the local capillary pressure. However, those terms will provide an indication of the influence of dynamic effects on the large-scale capillary pressure and the large-scale permeability tensor, and that information provides valuable guidance for future studies based on the theory presented in Part I.Roman Letters A scalar that maps {}*/t onto - A scalar that maps {}*/t onto - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - A interfacial area between the -region and the -region contained within, m2 - a vector that maps ({}*/t) onto , m - a vector that maps ({}*/t) onto , m - b vector that maps ({p}– g) onto , m - b vector that maps ({p}– g) onto , m - B second order tensor that maps ({p}– g) onto , m2 - B second order tensor that maps ({p}– g) onto , m2 - c vector that maps ({}*/t) onto , m - c vector that maps ({}*/t) onto , m - C second order tensor that maps ({}*/t) onto , m2 - C second order tensor that maps ({}*/t) onto . m2 - D third order tensor that maps ( ) onto , m - D third order tensor that maps ( ) onto , m - D second order tensor that maps ( ) onto , m2 - D second order tensor that maps ( ) onto , m2 - E third order tensor that maps () onto , m - E third order tensor that maps () onto , m - E second order tensor that maps () onto - E second order tensor that maps () onto - p c =(), capillary pressure relationship in the-region - p c =(), capillary pressure relationship in the-region - g gravitational vector, m/s2 - largest of either or - - - i unit base vector in thex-direction - I unit tensor - K local volume-averaged-phase permeability, m2 - K local volume-averaged-phase permeability in the-region, m2 - K local volume-averaged-phase permeability in the-region, m2 - {K } large-scale intrinsic phase average permeability for the-phase, m2 - K –{K }, large-scale spatial deviation for the-phase permeability, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K –{K }, large-scale spatial deviation for the-phase permeability in the-region, m2 - K * large-scale permeability for the-phase, m2 - L characteristic length associated with local volume-averaged quantities, m - characteristic length associated with large-scale averaged quantities, m - I i i = 1, 2, 3, lattice vectors for a unit cell, m - l characteristic length associated with the-region, m - ; characteristic length associated with the-region, m - l H characteristic length associated with a local heterogeneity, m - - n unit normal vector pointing from the-region toward the-region (n =–n ) - n unit normal vector pointing from the-region toward the-region (n =–n ) - p pressure in the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure in the-phase, N/m2 - {p } large-scale intrinsic phase average pressure in the capillary region of the-phase, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p local volume-averaged intrinsic phase average pressure for the-phase in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - p –{p }, large scale spatial deviation for the-phase pressure in the-region, N/m2 - P c p –{p }, capillary pressure, N/m2 - {pc}c large-scale capillary pressure, N/m2 - r 0 radius of the local averaging volume, m - R 0 radius of the large-scale averaging volume, m - r position vector, m - , m - S /, local volume-averaged saturation for the-phase - S * {}*{}*, large-scale average saturation for the-phaset time, s - t time, s - u , m - U , m2 - v -phase velocity vector, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - v local volume-averaged phase average velocity for the-phase in the-region, m/s - {v } large-scale intrinsic phase average velocity for the-phase in the capillary region of the-phase, m/s - {v } large-scale phase average velocity for the-phase in the capillary region of the-phase, m/s - v –{v }, large-scale spatial deviation for the-phase velocity, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - v –{v }, large-scale spatial deviation for the-phase velocity in the-region, m/s - V local averaging volume, m3 - V volume of the-phase in, m3 - V large-scale averaging volume, m3 - V capillary region for the-phase within, m3 - V capillary region for the-phase within, m3 - V c intersection of m3 - V volume of the-region within, m3 - V volume of the-region within, m3 - V () capillary region for the-phase within the-region, m3 - V () capillary region for the-phase within the-region, m3 - V () , region in which the-phase is trapped at the irreducible saturation, m3 - y position vector relative to the centroid of the large-scale averaging volume, m Greek Letters local volume-averaged porosity - local volume-averaged volume fraction for the-phase - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region - local volume-averaged volume fraction for the-phase in the-region (This is directly related to the irreducible saturation.) - {} large-scale intrinsic phase average volume fraction for the-phase - {} large-scale phase average volume fraction for the-phase - {}* large-scale spatial average volume fraction for the-phase - –{}, large-scale spatial deviation for the-phase volume fraction - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - –{}, large-scale spatial deviation for the-phase volume fraction in the-region - a generic local volume-averaged quantity associated with the-phase - mass density of the-phase, kg/m3 - mass density of the-phase, kg/m3 - viscosity of the-phase, N s/m2 - viscosity of the-phase, N s/m2 - interfacial tension of the - phase system, N/m - , N/m - , volume fraction of the-phase capillary (active) region - , volume fraction of the-phase capillary (active) region - , volume fraction of the-region ( + =1) - , volume fraction of the-region ( + =1) - {p } g, N/m3 - {p } g, N/m3  相似文献   

7.
Some results are presented of experimental studies of the equilibrium temperature and heat transfer of a sphere in a supersonic rarefied air flow.The notations D sphere diameter - u, , T,,l, freestream parameters (u is velocity, density, T the thermodynamic temperature,l the molecular mean free path, the viscosity coefficient, the thermal conductivity) - T0 temperature of the adiabatically stagnated stream - Te mean equilibrium temperature of the sphere - Tw surface temperature of the cold sphere (Twe) - mean heat transfer coefficient - e air thermal conductivity at the temperature Te - P Prandtl number - M Mach number  相似文献   

8.
The drag coefficient for bubbles with mobile or immobile interface rising in shear-thinning elastic fluids described by an Ellis or a Carreau model is discussed. Approximate solutions based on linearization of the equations of motion are presented for the highly elastic region of flow. These solutions are in reasonably good agreement with the theoretical predictions based on variational principles and with published experimental data. C D Drag coefficient - E * Differential operator [E * 2 = 2/2 + (sin/ 2)/(1/sin /)] - El Ellis number - F D Drag force - K Consistency index in the power-law model for non-Newtonian fluid - n Flow behaviour index in the Carreau and power-law models - P Dimensionless pressure [=(p – p 0)/0 (U /R)] - p Pressure - R Bubble radius - Re 0 Reynolds number [= 2R U /0] - Re Reynolds number defined for the power-law fluid [= (2R) n U 2–n /K] - r Spherical coordinate - t Time - U Terminal velocity of a bubble - u Velocity - Wi Weissenberg number - Ellis model parameter - Rate of deformation - Apparent viscosity - 0 Zero shear rate viscosity - Infinite shear rate viscosity - Spherical coordinate - Parameter in the Carreau model - * Dimensionless time [=/(U /R)] - Dimensionless length [=r/R] - Second invariant of rate of deformation tensors - * Dimensionless second invariant of rate of deformation tensors [=/(U /R)2] - Second invariant of stress tensors - * Dimensionless second invariant of second invariant of stress tensor [= / 0 2 (U /R)2] - Fluid density - Shear stress - * Dimensionless shear stress [=/ 0 (U /R)] - 1/2 Ellis model parameter - 1 2/* Dimensionless Ellis model parameter [= 1/2/ 0(U /R)] - Stream function - * Dimensionless stream function [=/U R 2]  相似文献   

9.
The harmonic content of the nonlinear dynamic behaviour of 1% polyacrylamide in 50% glycerol/water was studied using a standard Model R 18 Weissenberg Rheogoniometer. The Fourier analysis of the Oscillation Input and Torsion Head motions was performed using a Digital Transfer Function Analyser.In the absence of fluid inertia effects and when the amplitude of the (fundamental) Oscillation Input motion I is much greater than the amplitudes of the Fourier components of the Torsion Head motion Tn empirical nonlinear dynamic rheological propertiesG n (, 0),G n (, 0) and/or n (, 0), n (, 0) may be evaluated without a-priori-knowledge of a rheological constitutive equation. A detailed derivation of the basic equations involved is presented.Cone and plate data for the third harmonic storage modulus (dynamic rigidity)G 3 (, 0), loss modulusG 3 (, 0) and loss angle 3 (, 0) are presented for the frequency range 3.14 × 10–2 1.25 × 102 rad/s at two strain amplitudes, CP 0 = 2.27 and 4.03. Composite cone and plate and parallel plates data for both the third and fifth harmonic dynamic viscosities 3 (, 0), S (, 0) and dynamic rigiditiesG 3 (, 0),G 5 (, 0) are presented for strain amplitudes in the ranges 1.10 CP 0 4.03 and 1.80 PP 0 36 for a single frequency, = 3.14 × 10–1 rad/s. Good agreement was obtained between the results from both geometries and the absence of significant fluid inertia effects was confirmed by the superposition of the data for different gap widths.  相似文献   

10.
Zusammenfassung Zur Berechnung der dynamischen Idealviskosität Ideal (T) und der Idealwärmeleitfähigkeit ideal (T) benötigt man die kritische TemperaturT kr, das kritische spezifische Volum kr, die MolmasseM, den kritischen Parameter kr und die molare isochore WärmekapazitätC v(T). Sowohl das theoretisch, als auch das empirisch abgeleitete erweiterte Korrespondenzgesetz ergeben eine für praktische Zwecke ausreichende Genauigkeit für die Meßwertwiedergabe, die bei den assoziierenden Stoffen und den Quantenstoffen jedoch geringer ist als bei den Normalstoffen.
The extended correspondence law for the ideal dynamic viscosity and the ideal thermal conductivity of pure substances
For the calculation of the ideal dynamic viscosity Ideal (T) and the ideal thermal conductivity ideal (T) the critical temperatureT kr, the critical specific volumev kr, the molecular massM, the critical parameter kr, and the molar isochoric heat capacityC v(T) is needed. Not only the theoretically determined but also the empirically determined extended correspondence law gives for practical use a good representation of the measured data, which for the associating substances and the quantum substances is not so good as for the normal substances.
  相似文献   

11.
Steady and unsteady local concentration has been determined analytically for two- und three-dimensional sources and is presented for various boundary-concentrations, volumetric flows and diffusion coefficients. The steady cases have been evaluated numerically. In addition an unsteady two-dimensional mass transport has been evaluated.
Stofftransport in Quellströmungen
Zusammenfassung Es wurden die stationäre und instationäre örtliche Konzentration von einer zwei- und drei-dimensionalen Quellströmung als Funktion verschiedener Randkonzentrationen, verschiedener Stromvolumen und Diffusionskoeffizienten analytisch bestimmt. Die stationären Fälle wurden numerisch ausgewertet. Außerdem wurde ein zwei-dimensionaler instationärer Stofftransport behandelt.

Nomenclature a inner radius of circle (2-dimensional case), inner radius of sphere (three-dimensional case) - b } >a outer radius of circle (2-dimensional case), outer radius of sphere (three-dimensional case) - c concentration - c 1,c 2 given concentration at the boundariesr=a andb resp - c i initial concentration at the timet=0 - D diffusion coefficient - I n +1/2 modified spherical Bessel function - J v ,Y v Bessel function ofv-th order and first and second kind resp - k =b/a} > 1 diameter ratio - P n o () Legendre polynomials - ¯ r, polar coordinates - r, , spherical coordinates - t time - u velocity in radial direction - V 0 volumetric flow - 0 V/4D flow parameter for two-dimensional flow - 0 V 0/8 D flow parameter for three-dimensional flow - mn eigenvalues - mn te] 2 =n 2 + 0 2 ,=cos =r/a roots of determinant (28)  相似文献   

12.
Summary Previous work on the creeping flow of viscoelastic fluids past a sphere is reviewed. Theoretical analyses available in the literature were obtained for weakly elastic fluids and therefore they predict only a small influence of fluid elasticity on the drag. In this paper, an approximate theoretical analysis is given for the creeping flow past a rigid sphere in an unbounded medium. The analysis uses a variational principle to solve the equations of motion and continuity in conjunction with the Carreau constitutive equation. The theoretical results are presented in terms of a correction factor to the Newtonian drag coefficient. The correction factor is a function of the power law flow behaviour indexn, the ratio of limiting viscosities ( 0)/0 and a dimensionless time which reflects the elastic nature of the fluids. The results are presented in graphical form covering a realistic range of these dimensionless groups.In order to verify the theoretical predictions, the drag coefficient of a number of spheres was measured in a series of shear thinning elastic test fluids. The flow properties of the test fluids were independently measured with a Weissenberg Rheogoniometer. The power law index of the test fluids varied between 1.0 and 0.4. Particle Reynolds number based on 0 was in the range of 410–6 to 410–2. The difference between theoretically predicted values of drag coefficient and the experimentally measured values is less than ±7.5%. In addition, it is found that the Carreau viscosity equation can be used to predict the elastic parameter of primary normal stress difference with moderate to good accuracy for all the polymer solutions used in this work.
Zusammenfassung Einleitend wird ein Überblick über die früheren Untersuchungen betreffend die schleichende Strömung um eine Kugel gegeben. Die in der Literatur vorliegenden theoretischen Analysen sind auf schwach viskoelastische Flüssigkeiten beschränkt und sagen deshalb nur einen geringen Einfluß der Elastizität auf den Widerstand voraus. In dieser Veröffentlichung wird dagegen eine genäherte theoretische Analyse für die schleichende Strömung um eine starre Kugel in einem unendlich ausgedehnten Medium gegeben, bei welcher zur Lösung der Bewegungsgleichungen und der Kontinuitätsgleichung in Verbindung mit den rheologischen Stoffgleichungen vonCarreau ein Variationsprinzip verwendet wird. Die theoretischen Ergebnisse werden mittels eines Korrekturfaktors zum newtonschen Widerstandskoeffizienten beschrieben. Dieser Korrekturfaktor ist eine Funktion des Potenz-Gesetz-Exponentenn, des Verhältnisses der Grenzviskositäten ( 0)/0 und einer dimensionslosen Zeit, welche das elastische Verhalten kennzeichnet. Die Ergebnisse werden in graphischer Form unter Zugrundelegung eines realistischen Wertebereichs dieser dimensionslosen Gruppen dargestellt.Um diese theoretischen Voraussagen zu verifizieren, wurde der Widerstandskoeffizient für eine Anzahl von Kugeln in einer Reihe von Scherentzähung aufweisenden elastischen Probeflüssigkeiten gemessen. Die Fließeigenschaften dieser Flüssigkeiten wurden zusätzlich mit dem Weissenberg-Rheogoniometer bestimmt. Der Potenz-Gesetz-Exponent variierte dabei zwischen 1,0 und 0,4. Die auf den Kugeldurchmesser und die Nullviskosität bezogenen Reynolds-Zahlen lagen zwischen 410–6 und 410–2. Der Unterschied zwischen theoretisch vorausgesagten und experimentell bestimmten Widerstandskoeffizienten war kleiner als ±7,5%. Außerdem wurde noch gefunden, daß die Viskositätsgleichung vonCarreau dazu verwendet werden kann, den elastischen Parameter erste Normalspannungs-Differenz für alle in dieser Untersuchung verwendeten Polymerlösungen mit mäßiger bis guter Genauigkeit vorauszusagen.

Notation C d drag coefficient - d diameter of sphere - f external body forces in equation of motion [2] - F d drag force - g acceleration due to gravity - J integral defined in eq. [3] - n a parameter in the Carreau viscosity eq. [6] - p isotropic pressure term in equation of motion [2] - r,, spherical coordinates - R radius of sphere - Re 0, Re1 Reynolds numbers defined in eq. [16] - t time - u i ,u j velocities in equation of motion [2] - u r ,u r and components of velocity - V terminal velocity of sphere in unbounded medium - V volume, in eq. [3] - X correction factor to the drag force, eq. [14] - y,z dimensionless spherical coordinates, eq. [9] - ratio of two Reynolds numbers given by eq. [16] - shear rate - apparent viscosity - 0, zero shear rate and infinite shear rate viscosities respectively - a parameter in the Carreau viscosity eq. [6] - the dimensionless time, defined in eq. [11] - second invariant of the rate of deformation tensor - a parameter in the stream function, eq. [8] - stream function - p,f densities of sphere and fluid respectively With 7 figures and 1 table  相似文献   

13.
In applications of chemical engineering often the sedimentation is used to separate disperse particles from liquid phases. Some real liquids, e.g., polymer fluids, paints, and skin creams show viscoplastic flow behavior, i.e., they have a yield stress. In such fluids it is possible that suspended particles do not move under action of gravity although the density of the particles is greater than the fluid density. A possibility to sediment stuck spherical particles is shown. The fluid is set in sinusoidal vibration so that the particles undergo forced oscillations. This effect is investigated for single spheres. A model is given and several theoretical results are discussed. A criterion is presented that allows one to predict the combinations of the vibration parameters (amplitude and frequency) which are needed to sediment the spheres. The theoretical investigations are confirmed by experiments. The motion of several glass and steel spheres in an oscillating tube filled with aqueous carbopol solutions are detected. The comparison between theory and experiment shows good agreement.Nomenclature C Stokes drag coefficient - D strain rate tensor - E unit tensor - F, F w external resp. drag force - f body force vector - G Green deformation tensor - G dimensionless (shear) modulus - g acceleration of gravity - K abbreviation (Eq. (15)) - p pressure - R, spherical coordinates - R 0, R a sphere resp. body radius - T extra stress tensor - t time - S stress tensor - U 0, W 0 displacement amplitude - u displacement vector - velocity vector - V viscoelastic number - V k sphere volume - V steady sink velocity - Y yield stress parameter - Y g limiting value - Z Stokes number - density ratio - second invariant of D - radii ratio - y differential viscosity - , Lamé constants - * = + i complex (shear) modulus - f, k fluid resp. sphere density - second invariant of T - f yield stress - phase angle - frequency  相似文献   

14.
On the boundary conditions at the macroscopic level   总被引:2,自引:0,他引:2  
We study the problem of the boundary conditions specified at the boundary of a porous domain in order to solve the macroscopic transfer equations obtained by means of the volume-averaging method. The analysis is limited to the case of conductive transport but the method can be extended to other cases. A numerical study enables us to illustrate the theoretical results in the case of a model porous medium. Roman Letters sf interfacial area of the s-f interface contained within the macroscopic system m2 - A sf interfacial area of the s-f interface contained within the averaging volume m2 - C p mass fraction weighted heat capacity, kcal/kg/K - d s , d f microscopic characteristic length m - g vector that maps to s, m - h vector that maps to f , m - K eff effective thermal conductivity tensor, kcal/m s K - l REV characteristic length, m - L macroscopic characteristic length, m - n fs outwardly directed unit normal vector for the f-phase at the f-s interface - n e outwardly directed unit normal vector at the dividing surface - T * macroscopic temperature field obtained by solving the macroscopic equation (3), K - V averaging volume, m3 - V s , V f volume of the considered phase within the averaging volume, m3 - volume of the macroscopic system, m3 - s , f volume of the considered phase within the volume of the macroscopic system, m3 - dividing surface, m2 Greek Letters s , f volume fraction - ratio of thermal conductivities - s , f thermal conductivities, kcal/m s K - spatial average density, kg/m3 - microscopic temperature, K - * microscopic temperature corresponding to T * , K - spatial deviation temperature K - error on the temperature due to the macroscopic boundary conditions, K - spatial average - s , f intrinsic phase average  相似文献   

15.
Suddenly started laminar flow in the entrance region of a circular tube, with constant inlet velocity, is investigated analytically by using integral momentum approach. A closed form solution to the integral momentum equation is obtained by the method of characteristics to determine boundary layer thickness, entrance length, velocity profile, and pressure gradient.Nomenclature M(, , ) a function - N(, , ) a function - p pressure - p* p/1/2U 2, dimensionless pressure - Q(, , ) a function - R radius of the tube - r radial distance - Re 2RU/, Reynolds number - t time - U inlet velocity, constant for all time, uniform over the cross section - u velocity in the boundary layer - u* u/U, dimensionless velocity - u 1 velocity in the inviscid core - x axial distance - y distance perpendicular to the axis of the tube - y* y/R, dimensionless distance perpendicular to the axis - boundary layer thickness - * displacement thickness - /R, dimensionless boundary layer thickness - momentum thickness - absolute viscosity of the fluid - /, kinematic viscosity of the fluid - x/(R Re), dimensionless axial distance - density of the fluid - tU/(R Re), dimensionless time - w wall shear stress  相似文献   

16.
Summary A collocation technique is used in conjunction with complex variable methods and conformal transformation to determine the elastic bending moments and shear forces in a uniformly loaded infinite flat plate structure, supported at each node of a regular rectangular lattice by rigid rectangular columns of finite dimensions.Nomenclature A n coefficients in the series solution of the deflection function - a, b lengths of slab panel sides - C edge of column capital - c 1, c 2 column side dimensions - D plate rigidity - f 1, f 2 functions defining the boundary conditions of the problem - k x , k y , k numerical factors for bending moments - k value characterizing the aspect ratio of the column sides - k n parameters associated with complex potentials - m, n coefficients defining the mapping function - M x , M y bending moments in x and y directions - M , M radial and tangential bending moments - Q x , Q y shear forces - q uniformly distributed load acting on plate surface - R constant of the mapping function - r, polar coordinate system - S plate region in the (x, y) plane - w deflection function in the plate region - n , n parameters associated with the deflection functions - unit circle - complex mapping plane - , curvilinear coordinate system - Poisson's ratio of the slab material - (), x (), (), (), () complex potentials defining the deflection functions - value of on the unit circle - () mapping function  相似文献   

17.
In this paper a numerical analysis of the heat transfer between a bubbling fluidized bed of mono-dispersed glass beads of Geldart type B and an immersed heated tube bundle is investigated. The numerical procedure is based on a solution of the mass, momentum and energy equations of both phases with an Eulerian approach. Different physical models for the thermal transport coefficient of the solid phase were used. The results are compared with new experimental data. The numerical and the experimental results show a strong correlation between fluid dynamics and heat transfer similar to the packet theory of Mickley and Fairbanks (1955). B Defined in equation (15) – - c p Specific heat J/kg/K - d s Particle diameter m - d Tube Diameter of the heat transfer tube m - g, Gravitational constant m/s2 - g 0 Radial distribution function – - h Specific enthalpy J/kg - k Solids fluctuating energy diffusion coefficient Pa s - Nu Nusselt number – - p Pressure N/m2 - p s Solid pressure N/m2 - Heat flux W - Heat flux W - Re Reynolds number – - T Temperature K - T(t) Measured foil temperature K - t Time s - tr Trace of a tensor (sum of main-diagonal elements) m/s - v Velocity, v-direction m/s - Velocity vector m/s - x x-coordinate m - y y-coordinate m - Volumetric interphase heat transfer coefficient W/m3/K - Bed-to-wall heat transfer coefficient W/m2/K - gs Fluid-particle heat transfer coefficient W/m2/K - T Heat transfer coefficient at tube surface W/m2/K - Interphase drag coefficient kg/m3/s - Thickness of CuNi foil m - Dissipation of fluctuating energy Pa/s - Volume fraction – - Angle ° - Thermal conductivity W/m/K - cyl Defined in equation (13) – - Fluctuating energy exchange Pa/s - Volumetric heat generation rate W/m3 - Density kg/m3 - Granular temperature m2/s2 - Viscous stress tensor N/m2 - Defined in equation (14) – - Bulk Bulk properties - g Gas phase - gas Gas - i i = g, s (gas or solid) - m Mixture - pen Penetration theory - pm Particle material - s Solid phase - T Tube - Tube Tube - t total - W Wall - * Parameter multiplied by the volume fraction of its phase  相似文献   

18.
A way of measuring the geometrical characteristics of progressive steep water surface waves is to use a visualization technique connected with image analysis processing. In the laboratory, visualization of wave profiles can be realized with quite simple procedures: a previous paper (Bonmarin and Ramamonjiarisoa 1985) has described a technique allowing such a visualization in a large water tank 40 m long, 3.2 m wide and about 1 m deep. This paper reported also on a manual process for analysing the wave pictures obtained. In the present paper, we describe an automated image analysis method which is complementary to the manual process mentioned above. It uses a video technique and allows analysis of a large number of pictures leading to statistical measurements.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness = H/L - crest steepness = /L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness = /F 1 - crest rear steepness = /F 2 - vertical asymmetry factor = F 2/F 1 (describing the wave's asymmetry with respect to a vertical axis through the wave crest) - horizontal asymmetry factor = /H (describing the wave's asymmetry with respect to a horizontal axis: SWL) - L 3 vertical asymmetry factor = L 2/L 1 (describing the asymmetry between the crest and the trough) - E p potential energy of the wave - e + ratio between the potential energy located in the crest and the total potential energy of the wave  相似文献   

19.
A numerical solution is obtained for the problem of air flow past a sphere under conditions when nonequilibrium excitation of the vibrational degrees of freedom of the molecular components takes place in the shock layer. The problem is solved using the method of [1]. In calculating the relaxation rates account was taken of two processes: 1) transition of the molecular translational energy into vibrational energy during collision; 2) exchange of vibrational energy between the air components. Expressions for the relaxation rates were computed in [2]. The solution indicates that in the state far from equilibrium a relaxation layer is formed near the sphere surface. A comparison is made of the calculated values of the shock standoff with the experimental data of [3].Notation uVmax, vVmax velocity components normal and tangential to the sphere surface - Vmax maximal velocity - P V max 2 pressure - density - TT temperature - eviRT vibrational energy of the i-th component per mole (i=–O2, N2) - =rb–1 shock wave shape - a f the frozen speed of sound - HRT/m gas total enthalpy  相似文献   

20.
Zusammenfassung Der Wärmeübergang bei turbulenter Film kondensation strömenden Dampfes an einer waagerechten ebenen Platte wurde mit Hilfe der Analogie zwischen Impuls-und Wärmeaustausch untersucht. Zur Beschreibung des Impulsaustausches im Film wurde ein Vierbereichmodell vorgestellt. Nach diesem Modell wird die wellige Phasengrenze als starre rauhe Wand angesehen. Die Abhängigkeit einer Schubspannungs-Nusseltzahl von der Film-Reynoldszahl und Prandtlzahl wurde berechnet und dargestellt.
A model for turbulent film condensation of flowing vapour
The heat transfer in turbulent film condensation of flowing vapour on a horizontal flat plate was investigated by means of the analogy between momentum and heat transfer. To describe the momentum transfer in the film a four-region model was presented. With this model the wavy interfacial surface is treated as a stiff rough wall. A shear Nusselt number has been calculated and represented as a function of film Reynolds number and Prandtl number.

Formelzeichen a Temperaturleitkoeffizient - k Mischungswegkonstante - k s äquivalente Sandkornrauhigkeit - Nu x lokale Schubspannungs-Nusseltzahl,Nu x=xxv/uw - Pr Prandtlzahl,Pr=v/a - Pr t turbulente Prandtlzahl,Pr t =m/q - q Wärmestromdichte q - R Wärmeübergangswiderstand - Rf Wärmeübergangswiderstand des Films - Re F Reynoldszahl der Filmströmung - T Temperatur - U, V Geschwindigkeitskomponenten des Dampfes in waagerechter und senkrechter Richtung - u, Geschwindigkeitskomponenten des Kondensats in waagerechter und senkrechter Richtung - V Querschwankungsgeschwindigkeit des Kondensats und des Dampfes - u /gtD Schubspannungsgeschwindigkeit an der Phasengrenze für die Dampfgrenzschicht, uD =(/)1/2 - u F Schubspannungsgeschwindigkeit an der Phasengrenze für den Kondensatfilm,u F =(/)1/2 - u w Schubspannungsgeschwindigkeit an der Wand der Kühlplatte,u w =(w/)1/2 - y Wandabstand - x Wärmeübergangskoeffizient - gemittelte Kondensatfilmdicke - s Dicke der zähen Schicht der Filmströmung an der welligen Phasengrenze - 4 Dicke der zähen Schicht der Filmströmung an der gemittelten glatten Phasengrenze - Wärmeleitzahl - dynamische Viskosität - v kinematische Viskosität - Dichte - Oberflächenspannung - w Wandschubspannung - Schubspannung an der Phasengrenzfläche - m turbulente Impulsaustauschgröße - q turbulente Wärmeaustauschgröße Indizes d Wert des Dampfes - w Wert an der Wand - x lokaler Wert inx - Wert an der Phasengrenze Stoffgrößen ohne Index gelten für das Kondensat  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号