首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
In this paper,we have discussed constructive properties of a kind of uniformly almost periodic functions, of which the sequence of its Fourier exponents has unique limit point at infinity. \[\begin{gathered} f(x) \sim \sum\limits_{k = - \infty }^\infty {{A_k}} {e^{i{\Lambda _k}x}} \hfill \ {\Lambda _0} = \alpha ,0 < \alpha \leqslant {\Lambda _k} < {\Lambda _{k + 1}}(k = 0,1,2,...) \hfill \ \mathop {\lim }\limits_{k \to \infty } {\Lambda _k} = \infty ,{\Lambda _k} = - {\Lambda _k} \hfill \ |{\Lambda _k}| + |{\Lambda _{ - k}}| > 0{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (k \ne 0) \hfill \\ \end{gathered} \] Analogons to the approximation theory of periodic functioiis, we get some theorems similar to the Jackson theorem, Bernstein theorem and Zygmund theorem of periodio functions.  相似文献   

3.
In this paper the author proves a new fundamental lemma of Hardy-Lebesgne class $\[{H^2}(\sigma )\]$ and by this lemma obtains some fundamental results of exponential stability of $\[{C_0}\]$-semigroup of bounded linear operators in Banach spaces. Specially, if $\[{\omega _s} = \sup \{ {\mathop{\rm Re}\nolimits} \lambda ;\lambda \in \sigma (A) < 0\} \]$ and $\[\sup \{ \left\| {{{(\lambda - A)}^{ - 1}}} \right\|;{\mathop{\rm Re}\nolimits} \lambda \ge \sigma \} < \infty \]$ , where \[\sigma \in ({\omega _s},0)\]) and A is the infinitesimal generator of a $\[{C_0}\]$-semigroup in a Banach space $X$, then $\[(a)\int_0^\infty {{e^{ - \sigma t}}\left| {f({e^{tA}}x)} \right|} dt < \infty \]$, $\[\forall f \in {X^*},x \in X\]$; (b) there exists $\[M > 0\]$ such that $\[\left\| {{e^{tA}}x} \right\| \le N{e^{\sigma t}}\left\| {Ax} \right\|\]$, $\[\forall x \in D(A)\]$; (c) there exists a Banach space $\[\hat X \supset X\]$ such that $\[\left\| {{e^{tA}}x} \right\|\hat x \le {e^{\sigma t}}\left\| x \right\|\hat x,\forall x \in X.\]$.  相似文献   

4.
Let \[f(z) = z + \sum\limits_{n = 1}^\infty {{a_n}{z^n} \in S} {\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \log \frac{{f(z) - f(\xi )}}{{z - \xi }} - \frac{{z\xi }}{{f(z)f(\xi )}} = \sum\limits_{m,n = 1}^\infty {{d_{m,n}}{z^m}{\xi ^n},} \], we denote \[{f_v} = f({z_v})\] , \[\begin{array}{l} {\varphi _\varepsilon }({z_u}{z_v}) = {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\frac{1}{{(1 - {z_u}{{\bar z}_v})}},\g_m^\varepsilon (z) = - {F_m}(\frac{1}{{f(z)}}) + \frac{1}{{{z^m}}} + \varepsilon {{\bar z}^m}, \end{array}\], where \({F_m}(t)\) is a Faber polynomial of degree m. Theorem 1. If \[f(z) \in S{\kern 1pt} {\kern 1pt} {\kern 1pt} and{\kern 1pt} {\kern 1pt} {\kern 1pt} \sum\limits_{u,v = 1}^N {{A_{u,v}}{x_u}{{\bar x}_v} \ge 0} \] and then \[\begin{array}{l} \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}} \right|^\varepsilon }\exp \{ \alpha {F_l}({z_u},{z_v})\} \ \le \sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} \varphi _\varepsilon ^\alpha ({z_u}{z_v})l = 1,2,3, \end{array}\], where \[\begin{array}{l} {F_1}({z_u},{z_v}) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} g_n^\varepsilon ({z_u})\bar g_n^\varepsilon ({z_v}),\{F_2}({z_u},{z_v}) = \frac{1}{{1 + {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}),\{F_3}({z_u},{z_v}) = \frac{1}{{1 - {\varepsilon _n}R{d_{n,n}}}}Rg_n^\varepsilon ({z_u})Rg_n^\varepsilon ({z_v}). \end{array}\] The \[F({z_u},{z_v}) = \frac{1}{2}{g_1}({z_u}){{\bar g}_2}({z_v})\] is due to Kungsun. Theorem 2. If \(f(z) \in S\) ,then \[P(z) + \left| {\sum\limits_{u,v = 1}^N {{A_{u,v}}{\lambda _u}{{\bar \lambda }_v}} {{\left| {\frac{{{f_u} - {f_v}}}{{{z_u} - {z_v}}}\frac{{{z_u}{z_v}}}{{{f_u}{f_v}}}} \right|}^\varepsilon }} \right| \le \sum\limits_{u,v = 1}^N {{\lambda _u}{{\bar \lambda }_v}} \frac{1}{{1 - {z_u}{{\bar z}_v}}}\], where \[\begin{array}{l} P(z) = \frac{1}{2}\sum\limits_{n = 1}^\infty {\frac{1}{n}} {G_n}(z),\{G_n}(z) = {\left| {\left| {\sum\limits_{n = 1}^N {{\beta _u}({F_n}(\frac{1}{{f({z_u})}}) - \frac{1}{{z_u^n}})} } \right| - \left| {\sum\limits_{n = 1}^N {{\beta _u}z_u^n} } \right|} \right|^2}, \end{array}\], \(P(z) \equiv 0\) is due to Xia Daoxing.  相似文献   

5.
A measure μ is called Carleson measure,iff the condition of Carleson type μ(Q~*)≤C|Q|~α(a≥1)is satisfied,where C is a constant independent of the cube Q with edge lengthq>0 in R~n and Q~*={(y,t)∈R_+~(+1)|y∈Q,0相似文献   

6.
AIn this paper, the author obtains the following results:(1) If Taylor coeffiients of a function satisfy the conditions:(i),(ii),(iii)A_k=O(1/k) the for any h>0 the function φ(z)=exp{w(z)} satisfies the asymptotic equality the case h>1/2 was proved by Milin.(2) If f(z)=z α_2z~2 …∈S~* and,then for λ>1/2  相似文献   

7.
In the present paper, we show that there exist a bounded, holomorphic function $\[f(z) \ne 0\]$ in the domain $\[\{ z = x + iy:\left| y \right| < \alpha \} \]$ such that $\[f(z)\]$ has a Dirichlet expansion $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ in the halfplane $\[x > {x_f}\]$ if and only if $\[\frac{a}{\pi }\log r - \sum\limits_{{u_n} < r} {\frac{2}{{{u_n}}}} \]$ has a finite upperbound on $\[[1, + \infty )\]$, where $\[\alpha \]$ is a positive constant,$\[{x_f}( < + \infty )\]$ is the abscissa of convergence of $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ and the infinite sequence $\[\{ {u_n}\} \]$ satisfies $\[\mathop {\lim }\limits_{n \to + \infty } ({u_{n + 1}} - {u_n}) > 0\]$. We also point out some necessary conditions and sufficient ones Such that a bounded holomorphic function in an angular(or half-band) domain is identically zero if an infinite sequence of its derivatives and itself vanish at some point of the domain. Here some result are generalizations of those in [4].  相似文献   

8.
In analysis of p-L-L with tangent characteristic and frequency modulation input, we have obtained the following two types of the phase looked loop equation. \[\begin{array}{l} \frac{{{\partial ^2}\varphi }}{{\partial {t^2}}} + \alpha \frac{{d\varphi }}{{dt}} + \gamma \tan \varphi = {\beta _1} + {\beta _2}(\cos {\Omega _M}t + {\Omega _M}\sin {\Omega _M}t){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (I)\\frac{{{\partial ^2}\varphi }}{{\partial {t^2}}} + (\alpha + \eta {\sec ^2}\varphi )\frac{{d\varphi }}{{dt}} + \gamma \tan \varphi = {\beta _1} + {\beta _2}(\cos {\Omega _M}t - {\Omega _M}\sin {\Omega _M}t){\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (II) \(\alpha > 0,\gamma > 0,\eta > 0,{\beta _1} > 0,{\beta _2} > 0,{\Omega _M} > 0) \end{array}\] In this paper, our aim is to explain the usual qualitative method and Lyapunov's function method, by which the existence of a periodic solution of (I), (II) is established. In addition, we especially point out: How is to construct the Lyapunovas function for the nonlinear and nonairtoiiomous system? This is a very important problem.  相似文献   

9.
Based on [3] and [4],the authors study strong convergence rate of the k_n-NNdensity estimate f_n(x)of the population density f(x),proposed in [1].f(x)>0 and fsatisfies λ-condition at x(0<λ≤2),then for properly chosen k_nlim sup(n/(logn)~(λ/(1 2λ))丨_n(x)-f(x)丨C a.s.If f satisfies λ-condition,then for propeoly chosen k_nlim sup(n/(logn)~(λ/(1 3λ)丨_n(x)-f(x)丨C a.s.,where C is a constant.An order to which the convergence rate of 丨_n(x)-f(x)丨andsup 丨_n(x)-f(x)丨 cannot reach is also proposed.  相似文献   

10.
Let L(x) denote the number of square-full integers not exceeding x. It is proved in [1] thatL(x)~(ζ(3/2)/ζ(3))x~(1/2) (ζ(2/3)/ζ(2))x~(1/3) as x→∞,where ζ(s) denotes the Riemann zeta function. Let △(x) denote the error function in the asymptotic formula for L(x). It was shown by D. Suryanaryana~([2]) on the Riemann hypothesis (RH) that1/x integral from n=1 to x |△(t)|dt=O(x~(1/10 s))for every ε>0. In this paper the author proves the following asymptotic formula for the mean-value of △(x) under the assumption of R. H.integral from n=1 to T (△~2(t/t~(6/5))) dt~c log T,where c>0 is a constant.  相似文献   

11.
In this article we generahze the polynomials of Kantorovitch \({P_n}(f)\) . Let \({B_n}\) be a sequence of linear operators from C[a,b] into \({H_n}\), if \[f(t) \in L[a,b],F(u) = \int_a^u {f(t)dt} ,{A_n}(f(t),x) = \frac{d}{{dx}}{B_{n + 1}}(F(u),x)\], here \({B_n}\)satisfy\[\begin{array}{l} (a):{B_n}(1,x) \equiv 1,{B_n}(u,x) \equiv x;\(b):for{\kern 1pt} {\kern 1pt} g(u) \in C[a,b]{\kern 1pt} {\kern 1pt} we{\kern 1pt} {\kern 1pt} have{\kern 1pt} {\kern 1pt} {B_n}(g(u),b) = g(b). \end{array}\]. we call such \({A_n}(f)\) generalized polynomials of Kantorovitch (denoted by \({A_n}(f) \in K\) ). Let \[\begin{array}{l} {\varepsilon _n}({W^2};x)\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}} \left| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right|,\{\varepsilon _n}{({W^2}{L^p})_{{L^p}}}\mathop = \limits^{def} \mathop {\sup }\limits_{f \in {W^2}{L^p}} {\left\| {{A_n}(f(t),x) - f(x) - f'(x)({A_n}(t,x) - x)} \right\|_p}. \end{array}\] We have proved the following results: Let An he a sequence of linear continuous operators of type \[C[a,b] \Rightarrow C[a,b],{D_n}(x,z)\mathop = \limits^{def} {A_n}(\left| {t - z} \right|,x) - \left| {x - z} \right| - ({A_n}(t,x) - x)Sgn(x - z),{A_n}(1,x) = 1\] then (1):\({\varepsilon _n}({W^2};x) = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dz\), (2): Moreover, if \({A_n}\) be a sequence of linear positive operators, then for \(\left[ {\begin{array}{*{20}{c}} {a \le x \le b}\{a \le z \le b} \end{array}} \right]\) ,we have \({D_n}(x,z) \ge 0\), and \({\varepsilon _n}({W^2};x) = \frac{1}{2}{A_n}({(t - x)^2},x)\). Let \({A_n}(f) \in K\) be a sequence of linear positive operators,\[{R_n}{(z)_L} = \frac{1}{2}\int_a^b {\left| {{D_n}(x,z)} \right|} dx\],then \[{R_n}{(z)_L} = \frac{1}{2}\left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right]\] and \[{\varepsilon _n}{({W^2}L)_L}{\rm{ = }}\frac{1}{2}\left\| {{B_{n + 1}}({u^2},z) - {z^2}} \right\|\]. Let \[{g_n} = \frac{1}{2}\mathop {\max }\limits_{a \le x \le b} {A_n}({(t - x)^2},x),{h_n} = \frac{1}{2}\mathop {\max }\limits_{a \le z \le b} \left[ {{B_{n + 1}}({u^2},z) - {z^2}} \right],\] then \[{\varepsilon _n}{({W^2}{L^p})_{{L^p}}} \le {g_n}^{1 - \frac{1}{p}}{h_n}^{\frac{1}{p}}(1 < p < \infty ).\]  相似文献   

12.
In this paper, we consider the generalized Riemann-Hilberij problem for second order quasi-linear elliptic complex equation \[\begin{array}{l} \frac{{{\partial ^2}w}}{{\partial {{\bar z}^2}}} + {q_1}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}w}}{{\partial {z^2}}} + {q_2}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}\bar w}}{{\partial z\partial \bar z}}\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + {q_3}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}w}}{{\partial z\partial \bar z}} + {q_4}(z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}})\frac{{{\partial ^2}\bar w}}{{\partial z\partial \bar z}}{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} (1)\{\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} {\kern 1pt} + \gamma (z,w,\frac{{\partial w}}{{\partial \bar z}},\frac{{\partial w}}{{\partial z}}),z \in G \end{array}\] satifying the boundary condition \[{\mathop{\rm Re}\nolimits} \left[ {{{\bar \lambda }_1}(z)\frac{{\partial w}}{{\partial \bar z}}} \right] = {\gamma _1}(z),{\mathop{\rm Re}\nolimits} \left[ {{{\bar \lambda }_2}(z)\frac{{\partial w}}{{\partial \bar z}}} \right] = {\gamma _2}(z),z \in \gamma {\kern 1pt} {\kern 1pt} {\kern 1pt} (2)\] Many authors (see that papers 1, 4-6) have studied the Diriohlet problem and Riemann-Hilbert problem for linear elliptic complex equation. In our papers 2, 3 we also considered the generalized Riemann-Hilbert problem of the general second order linear elliptic complex equation. We obtained the existence theorem, the explicit form of generalized solution and the sufficient and necessary conditions for the solvability of the above mentioned boundary value problem. Based on these results and applying the property of the introduced integral operators and Schauder's fixed-point principle, it can be proved that the analogous deductions in 3 also hold for the generalized Riemann-Hilber problem (1), (2) of the quasi-linear complex equation, i, e., we have the following theorem: Theorem, If the coefficients of second order quasi-linear elliptic complex equation (1) satifies some conditions then i) When index \({n_1} \ge 0,{n_2} \ge 0\), the boundary value problem (1), (2) is always solvable and the solution depends on 2 \(2({n_1} + {n_2} + 1)\) arbitrary real constants. ii) When index \({n_1} \ge 0,{n_2} < 0{\kern 1pt} {\kern 1pt} {\kern 1pt} (or{\kern 1pt} {\kern 1pt} {\kern 1pt} {n_1} < 0,{n_2} \ge 0{\kern 1pt} )\), the sufficient and necessary condition for the solvability of the above mentioned boundary value problem (1),(2) consists of \( - 2{n_2} - 1{\kern 1pt} {\kern 1pt} {\kern 1pt} ( - 2n, - 1)\) real equalities, if and only if the equalities are satisfied, the boundary value problem is solvable and the solution depends on \(2{n_1} + 1{\kern 1pt} {\kern 1pt} (2{n_2} + 1)\) arbitrary real constants. iii)When index \({n_1} < 0,{n_2} < 0\), the sufficient and necessary condition for the solvability of the above mentioned boundary value problem (1) , (2) consists of \( - 2({n_1} + {n_2} + 1)\) real equalities, if and only if the equalitieis are satisfied, the boundary-value problem is solvable. Finally, in the similar way, we may farther extend the result to the case of the nonlinear uniform elliptic complex equation.  相似文献   

13.
Suppose that $\[{x_1},{x_2}, \cdots \]$ are i i d. random variables on a probability space $\[(\Omega ,F,P)\]$ and $\[{x_1}\]$ is normally distributed with mean $\[\theta \]$ and variance $\[{\sigma ^2}\]$, both of which are unknown. Given $\[{\theta _0}\]$ and $\[0 < \alpha < 1\]$, we propose a concrete stopping rule T w. r. e.the $\[\{ {x_n},n \ge 1\} \]$ such that $$\[{P_{\theta \sigma }}(T < \infty ) \le \alpha \begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta \le {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[{P_{\theta \sigma }}(T < \infty ) = 1\begin{array}{*{20}{c}} {for}&{\begin{array}{*{20}{c}} {all}&{\theta > {\theta _0},\sigma > 0,} \end{array}} \end{array}\]$$ $$\[\mathop {\lim }\limits_{\theta \downarrow {\theta _0}} {(\theta - {\theta _0})^2}{({\ln _2}\frac{1}{{\theta - {\theta _0}}})^{ - 1}}{E_{\theta \sigma }}T = 2{\sigma ^2}{P_{{\theta _0}\sigma }}(T = \infty )\]$$ where $\[{\ln _2}x = \ln (\ln x)\]$.  相似文献   

14.
Let {X,Xn;n ≥ 1} be a strictly stationary sequence of ρ-mixing random variables with mean zeros and finite variances. Set Sn =∑k=1^n Xk, Mn=maxk≤n|Sk|,n≥1.Suppose limn→∞ESn^2/n=:σ^2〉0 and ∑n^∞=1 ρ^2/d(2^n)〈∞,where d=2 if 1≤r〈2 and d〉r if r≥2.We prove that if E|X|^r 〈∞,for 1≤p〈2 and r〉p,then limε→0ε^2(r-p)/2-p ∑∞n=1 n^r/p-2 P{Mn≥εn^1/p}=2p/r-p ∑∞k=1(-1)^k/(2k+1)^2(r-p)/(2-p)E|Z|^2(r-p)/2-p,where Z has a normal distribution with mean 0 and variance σ^2.  相似文献   

15.
Let X_1,…,X_n be a sequence of independent identically distributed random variableswith distribution function F and density function f.The X_are censored on the right byY_i,where the Y_i are i.i.d.r.v.s with distribution function G and also independent of theX_i.One only observesLet S=1-F be survival function and S be the Kaplan-Meier estimator,i.e.,where Z_are the order statistics of Z_i and δ_((i))are the corresponping censoring indicatorfunctions.Define the density estimator of X_i by where =1-and h_n(>0)↓0.  相似文献   

16.
If E is a separable type-2 Banach space and Esub<0>sub is a linear subspace of E, then the following are equivalent: (a) There exists a probability measure \[\mu \] on E, Which is \[{E_{\text{0}}}\]-quasi-invariant. (b) There exists a sequence \[({X_n}) \subset E\] such that \[\sum {{e_n}(\omega ){X_n}} \] converges a.s., where \[{{e_n}(\omega )}\] are indepondend identically distributed symmetric stable random variables of index 2,i,e.\[E(\exp (it{\kern 1pt} {\kern 1pt} {e_n}(\omega ))) = exp( - \frac{{{t^2}}}{2})\]for all real t, and \[{E_{\text{0}}} \subset \{ x,x = \sum {{\lambda _n}{X_n}} ,\forall ({\lambda _n}) \in {l_2}\} \] In this note we prove that \[\sum {{\lambda _n}{X_n}} \] is convergent.  相似文献   

17.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

18.
The author investigated how big the lag increments of a 2-parameter Wiener process is in [1]. In this paper the limit inferior results for the lag increments are discussed and the same results as the Wiener process are obtained. For example, if $\[\mathop {\lim }\limits_{T \to \infty } \{ \log T/{a_T} + \log (\log {b_T}/a_T^{1/2} + 1)\} /\log \log T = r,0 \leqslant r \leqslant \infty \] $ then $\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{t \leqslant s \leqslant T} \mathop {\sup }\limits_{R \in L_s^*(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $ $\[\mathop {\lim }\limits_{\overline {T \to \infty } } \mathop {\sup }\limits_{{a_T} \leqslant t \leqslant T} \mathop {\sup }\limits_{R \in {{\tilde L}_T}(t)} |W(R)|/d(T,t) = {\alpha _r},a.s.,\] $ where $\alpha _r=(r/(r+1))^{1/2}$, $L*_s(t)$ and $\tider L_T(t)$ are the sets of rectangles which satisfy some conditions. Moreover, the limit inferior results of another class of lag increments are discussed.  相似文献   

19.
In this paper,we study the infinity behavior of the bounded subharmonic functions on a Ricci non-negative Riemannian manifold M.We first show that limr→∞r^2/V(r)∫B(r)△hdv=0if h is a bounded subharmonic function.If we further assume that the Laplacian decays pointwisely faster than quadratically we show that h approaches its supremun pointwisely at infinity,under certain auxiliary conditions on the volume growth of M.In particular,our result applies to the case when the Riemannian manifold has maximum volume growth.We also derive a representation formula in our paper,from which one can easily derive Yau‘s Liouville theorem on bounded harmonic functions.  相似文献   

20.
In this paper, the author proves the existence and uniqueness of nonnegative solution for the first boundary value problem of uniform degenerated parabolic equation $$\[\left\{ {\begin{array}{*{20}{c}} {\frac{{\partial u}}{{\partial t}} = \sum {\frac{\partial }{{\partial {x_i}}}\left( {v(u){A_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}} \right) + \sum {{B_i}(x,t,u)} \frac{{\partial u}}{{\partial {x_i}}}} + C(x,t,u)u\begin{array}{*{20}{c}} {}&{(x,t) \in [0,T]} \end{array},}\{u{|_{t = 0}} = {u_0}(x),x \in \Omega ,}\{u{|_{x \in \partial \Omega }} = \psi (s,t),0 \le t \le T} \end{array}} \right.\]$$ $$\[\left( {\frac{1}{\Lambda }{{\left| \alpha \right|}^2} \le \sum {{A_{ij}}{\alpha _i}{\alpha _j}} \le \Lambda {{\left| \alpha \right|}^2},\forall a \in {R^n},0 < \Lambda < \infty ,v(u) > 0\begin{array}{*{20}{c}} {and}&{v(u) \to 0\begin{array}{*{20}{c}} {as}&{u \to 0} \end{array}} \end{array}} \right)\]$$ under some very weak restrictions, i.e. $\[{A_{ij}}(x,t,r),{B_i}(x,t,r),C(x,t,r),\sum {\frac{{\partial {A_{ij}}}}{{\partial {x_j}}}} ,\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}} \in \overline \Omega } \times [0,T] \times R,\left| {{B_i}} \right| \le \Lambda ,\left| C \right| \le \Lambda ,\],\[\left| {\sum {\frac{{\partial {B_i}}}{{\partial {x_i}}}} } \right| \le \Lambda ,\partial \Omega \in {C^2},v(r) \in C[0,\infty ).v(0) = 0,1 \le \frac{{rv(r)}}{{\int_0^r {v(s)ds} }} \le m,{u_0}(x) \in {C^2}(\overline \Omega ),\psi (s,t) \in {C^\beta }(\partial \Omega \times [0,T]),0 < \beta < 1\],\[{u_0}(s) = \psi (s,0).\]$  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号