首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A. Hajnal 《Combinatorica》1985,5(2):137-139
We prove (in ZFC) that for every infinite cardinal ϰ there are two graphsG 0,G 1 with χ(G 0)=χ(G 1)=ϰ+ and χ(G 0×G 1)=ϰ. We also prove a result from the other direction. If χ(G 0)≧≧ℵ0 and χ(G 1)=k<ω, then χ(G 0×G 1)=k.  相似文献   

2.
We prove that for every constant >0 the chromatic number of the random graphG(n, p) withp=n –1/2– is asymptotically almost surely concentrated in two consecutive values. This implies that for any <1/2 and any integer valued functionr(n)O(n ) there exists a functionp(n) such that the chromatic number ofG(n,p(n)) is preciselyr(n) asymptotically almost surely.Research supported in part by a USA Israeli BSF grant and by a grant from the Israel Science Foundation.Research supported in part by a Charles Clore Fellowship.  相似文献   

3.
We answer a question of Erdős [1], [2] by showing that any graph of uncountable chromatic number contains an edge through which there are cycles of all (but finitely many) lengths.  相似文献   

4.
P. Erdős and A. Hajnal asked the following question. Does there exist a constant ε>0 with the following property: If every subgraphH of a graphG can be made bipartite by the omission of at most ε|H| edges where |H| denotes the number of vertices ofH thenx(H) ≦ 3. The aim of this note is to give a negative answer to this question and consider the analogous problem for hypergraphs. The first was done also by L. Lovász who used a different construction.  相似文献   

5.
A crucial step in the Erdös-Rényi (1960) proof that the double-jump threshold is also the planarity threshold for random graphs is shown to be invalid. We prove that whenp=1/n, almost all graphs do not contain a cycle with a diagonal edge, contradicting Theorem 8a of Erdös and Rényi (1960). As a consequence, it is proved that the chromatic number is 3 for almost all graphs whenp=1/n.Research supported U.S. National Science Foundation Grants DMS-8303238 and DMS-8403646. The research was conducted on an exchange visit by Professor Wierman to Poland supported by the national Academy of Sciences of the USA and the Polish Academy of Sciences.  相似文献   

6.
In 1973, P. Erdös conjectured that for eachkε2, there exists a constantc k so that ifG is a graph onn vertices andG has no odd cycle with length less thanc k n 1/k , then the chromatic number ofG is at mostk+1. Constructions due to Lovász and Schriver show thatc k , if it exists, must be at least 1. In this paper we settle Erdös’ conjecture in the affirmative. We actually prove a stronger result which provides an upper bound on the chromatic number of a graph in which we have a bound on the chromatic number of subgraphs with small diameter.  相似文献   

7.
We study the relationship between the minimum dimension of an orthogonal representation of a graph over a finite field and the chromatic number of its complement. It turns out that for some classes of matrices defined by a graph the 3-colorability problem is equivalent to deciding whether the class defined by the graph contains a matrix of rank 3 or not. This implies the NP-hardness of determining the minimum rank of a matrix in such a class. Finally we give for any class of matrices defined by a graph that is interesting in this respect a reduction of the 3-colorability problem to the problem of deciding whether or not this class contains a matrix of rank equal to three.The author is financially supported by the Cooperation Centre Tilburg and Eindhoven Universities.  相似文献   

8.
In this paper, the choosability of outerplanar graphs, 1-tree and strong 1-outerplanargraphs have been described completely. A precise upper bound of the list chromatic number of 1-outerplanar graphs is given, and that every 1-outerplanar graph with girth at least 4 is 3-choosable is proved.  相似文献   

9.
Star chromatic numbers of graphs   总被引:10,自引:0,他引:10  
We investigate the relation between the star-chromatic number (G) and the chromatic number (G) of a graphG. First we give a sufficient condition for graphs under which their starchromatic numbers are equal to their ordinary chromatic numbers. As a corollary we show that for any two positive integersk, g, there exists ak-chromatic graph of girth at leastg whose star-chromatic number is alsok. The special case of this corollary withg=4 answers a question of Abbott and Zhou. We also present an infinite family of triangle-free planar graphs whose star-chromatic number equals their chromatic number. We then study the star-chromatic number of An infinite family of graphs is constructed to show that for each >0 and eachm2 there is anm-connected (m+1)-critical graph with star chromatic number at mostm+. This answers another question asked by Abbott and Zhou.  相似文献   

10.
A random bipartite graphG(n, n, p) is obtained by taking two disjoint subsets of verticesA andB of cardinalityn each, and by connecting each pair of verticesaA andbB by an edge randomly and independently with probabilityp=p(n). We show that the choice number ofG(n, n, p) is, almost surely, (1+o(1))log2(np) for all values of the edge probabilityp=p(n), where theo(1) term tends to 0 asnp tends to infinity.Research supported in part by a USA-Israeli BSF grant, a grant from the Israel Science Foundation, a Sloan Foundation grant No. 96-6-2 and a State of New Jersey grant.Research supported by an IAS/DIMACS Postdoctoral Fellowship.  相似文献   

11.
Summary The chromatic number of rational five-space is the chromatic number of the infinite graph whose vertex set is the set of all those five-dimensional vectors with all the coordinates being rational numbers and with two vertices forming an edge iff the Euclidean distance is exactly one. In this paper it is shown that the chromatic number of rational five-space is at least six.  相似文献   

12.
We present a purely graph-theoretical construction of highly chromatic graphs without short cycles.  相似文献   

13.
L. A. Székely 《Combinatorica》1984,4(2-3):213-218
LetH be a set of positive real numbers. We define the geometric graphG H as follows: the vertex set isR n (or the unit circleS 1) andx, y are joined if their distance belongs toH. We define the measurable chromatic number of geometric graphs as the minimum number of classes in a measurable partition into independent sets. In this paper we investigate the difference between the notions of the ordinary and measurable chromatic numbers. We also prove upper and lower bounds on the Lebesgue upper density of independent sets.  相似文献   

14.
On multiplicative graphs and the product conjecture   总被引:1,自引:0,他引:1  
We study the following problem: which graphsG have the property that the class of all graphs not admitting a homomorphism intoG is closed under taking the product (conjunction)? Whether all undirected complete graphs have the property is a longstanding open problem due to S. Hedetniemi. We prove that all odd undirected cycles and all prime-power directed cycles have the property. The former result provides the first non-trivial infinite family of undirected graphs known to have the property, and the latter result verifies a conjecture of Ne?et?il and Pultr These results allow us (in conjunction with earlier results of Ne?et?il and Pultr [17], cf also [7]) to completely characterize all (finite and infinite, directed and undirected) paths and cycles having the property. We also derive the property for a wide class of 3-chromatic graphs studied by Gerards, [5].  相似文献   

15.
The distribution of the chromatic number on random graphsG n, p is quite sharply concentrated. For fixedp it concentrates almost surely in √n ω(n) consecutive integers where ω(n) approaches infinity arbitrarily slowly. If the average degreepn is less thann 1/6, it concentrates almost surely in five consecutive integers. Large deviation estimates for martingales are used in the proof.  相似文献   

16.
COMPUTATIONAL COMPLEXITY OF(2,2) PATH CHROMATIC NUMBER PROBLEM   总被引:2,自引:0,他引:2  
Is there a normal Pk coloring using r colors for a given graph ? This problem is called the (k, r) path chromatic number problem of graphs. This paper proves that the (2, 2) path chromatic number problem of graphs with maximum degree 4 is NP-complete.  相似文献   

17.
A graphG isk-critical if it has chromatic numberk, but every proper subgraph of it is (k?1)-colorable. This paper is devoted to investigating the following question: for givenk andn, what is the minimal number of edges in ak-critical graph onn vertices, with possibly some additional restrictions imposed? Our main result is that for everyk≥4 andn>k this number is at least $\left( {\frac{{k - 1}}{2} + \frac{{k - 3}}{{2(k^2 - 2k - 1)}}} \right)n$ , thus improving a result of Gallai from 1963. We discuss also the upper bounds on the minimal number of edges ink-critical graphs and provide some constructions of sparsek-critical graphs. A few applications of the results to Ramsey-type problems and problems about random graphs are described.  相似文献   

18.
19.
An upper bound is given on the number of acyclic orientations of a graph, in terms of the spectrum of its Laplacian. It is shown that this improves upon the previously known bound, which depended on the degree sequence of the graph. Estimates on the new bound are provided.A lower bound on the number of acyclic orientations of a graph is given, with the help of the probabilistic method. This argument can take advantage of structural properties of the graph: it is shown how to obtain stronger bounds for small-degree graphs of girth at least five, than are possible for arbitrary graphs. A simpler proof of the known lower bound for arbitrary graphs is also obtained.Both the upper and lower bounds are shown to extend to the general problem of bounding the chromatic polynomial from above and below along the negative real axis.Partially supported by the NSF under grant CCR-9404113. Most of this research was done while the author was at the Massachusetts Institute of Technology, and was supported by the Defense Advanced Research Projects Agency under Contracts N00014-92-J-1799 and N00014-91-J-1698, the Air Force under Contract F49620-92-J-0125, and the Army under Contract DAAL-03-86-K-0171.Supported by an ONR graduate fellowship, grants NSF 8912586 CCR and AFOSR 89-0271, and an NSF postdoctoral fellowship.  相似文献   

20.
A set S of vertices of the graph G is called k-reducible if the following is true: G is k-choosable if and only if G-S is k-choosable. A k-reduced subgraphH of G is a subgraph of G such that H contains no k-reducible set of some specific forms. In this paper, we show that a 3-reduced subgraph of a non-3-choosable plane graph G contains either adjacent 5-faces, or an adjacent 4-face and k-face, where k?6. Using this result, we obtain some sufficient conditions for a plane graph to be 3-choosable. In particular, if G is of girth 4 and contains no 5- and 6-cycles, then G is 3-choosable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号