首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We experimentally demonstrated a single-mode laser at 1056 nm with Nd-doped phosphate glass microstructured optical fiber (MOF), which was fabricated with conventional stack-and-draw method. The laser action was observed from a Fabry-Perot cavity formed by placing two dichroic mirrors of ∼100 and 85% reflectivity, to the two end facets of MOF. Pumped by CW laser diodes (LDs) at 808 nm, the MOF laser yielded a maximum output power of 8.5 mW and a slope efficiency of 2%.  相似文献   

2.
Zhang G  Zhou Q  Yu C  Hu L  Chen D 《Optics letters》2012,37(12):2259-2261
We report on high-power fiber lasers based on index-guiding, all-solid neodymium-doped (Nd-doped) phosphate photonic crystal fiber (PCF) with a hexagonal-shaped inner cladding. The optimum fiber laser with a 36 cm length active fiber, generated up to 7.92 W output power at 1053 nm, which benefited from a high absorption coefficient for pump power due to its noncircular inner cladding. The guiding properties of the all-solid PCF were also investigated. A stable mode with a donut-shaped profile and a power-dependent laser beam quality have been observed experimentally and analyzed.  相似文献   

3.
Watt-level short fiber lasers side-pumped through fiber-to-waveguide couplers are demonstrated. The fiber lasers are fabricated from Nd-doped phosphate glass with large numerical aperture of 0.2 and rectangular cross section of 1.5 × 0.5 (mm). Single transverse mode output is achieved by the gain-guiding effect. Average power of 1 W is generated from a 4.0-cm-long fiber laser with a slope efficiency of 10%.  相似文献   

4.
Potentialities of independent tailoring the index and gain profiles in fiber laser aiming to achieve a strong modal discrimination are theoretically examined. It is demonstrated by numerical simulations existence of fiber amplifier constructions which have the flattened fundamental mode profile in the gain region. It is shown that the fundamental mode retain the largest modal gain in comparison with modal gains of higher-order-modes for any depletion of the gain by the fundamental mode. The particular design is presented with the flattened fundamental mode area 6360 μm squared.  相似文献   

5.
A preform sleeving technique is demonstrated that allows the fabrication of single-mode polymer microstructured fiber with the smallest core and hole dimensions yet reported to our knowledge. For a fixed triangular hole pattern a range of fibers is produced by adjustment to the operating conditions of the draw tower. Numerical modeling is carried out for one of the fibers produced with a 570-microm external diameter, a core diameter of 2.23 microm, an average hole diameter of 0.53 microm, and an average hole spacing of 1.38 microm. This fiber was shown to be endlessly single mode.  相似文献   

6.
A kind of microstructured polymer optical fiber with elliptical core has been fabricated by adopting insitu chemical polymerization technology and the secondary sleeving draw-stretching technique. Microscope photography demonstrates the clear hole-structure retained in the fiber. Though the holes distortion is visible, initial laser experiment indicates that light can be strongly confined in the elliptical core region,and the mode field is split obviously and presents the multi-mode characteristic. Numerical modeling is carried out for the real fiber with the measured parameters, including the external diameter of 150μm, the average holes diameter of 3.3μm, and the averageole spacing of .3μm by using full-vector plane wave method. The guided mode fields of the numerical simulation are consistent with the experiment result.This fiber shows the strong multi-mode and weak birefringence in the visible and near-infrared band, and has possibility for achieving the fiber mode convertors, mode selective couplers and so on.  相似文献   

7.
The 1-hole-missing and 7-hole-missing photonic crystal fibers (PCFs) with flattened fundamental modes (FMs) are proposed by introducing a layer of up-doped silica into the core of the PCFs. The transverse mode competitions are compared between the 7-hole-missing PCF lasers with and without flattened-FMs. The numerical results show that the flattened-FM PCF lasers can support the single transverse mode operation, even for a large value of the ratio of air hole diameter to the spacing between holes (up to 0.53).  相似文献   

8.
A theoretical modeling of Yb-doped double-clad fiber lasers under various pumping modes including arbitrary numbers of end-pump and side-pump is introduced. Approximate analytic expressions of distributed lasers along the whole fiber are derived, and their accuracies are investigated. The effect of the pumping mode on the output performance of fiber lasers is discussed. The numerical results show that the approximate analytic solution is in excellent agreement with the exact numerical solution of the rate equations, the output power in the side-pump scheme is lower than that in end-pumping scheme, and more uniform distributions of laser and pump powers can be achieved by adopting the distributed pump mode and optimizing the arrangement of pump powers. However, further flattening the pump distribution by using more pump points can degrade the laser efficiency.  相似文献   

9.
We present what is believed to be the first experimental demonstration of a new mechanism of mode coupling in multicore fibers (MCFs) based on their indirect interaction inside the fiber via intermediate mode, analogous to the Bragg mode, which is very sensitive to bending of the fiber. Very strong coupling between the core modes regardless of large spacing (approximately 28 microm) between them has been demonstrated in the MCF laser as well as in the probe beam schemes. 70% of power conversion from one core to another with beating length of tens of centimeters in 4-core MCF is measured.  相似文献   

10.
Based on the expansion of the fundamental mode LP01 in single mode fiber in terms of Laguerre-Gaussian free space modes, the feedback coupling losses for two different types of cavity mirror, i.e., a curvature mirror and a combing mirror of a lens and a plane mirror, are numerically calculated for the first time. The results show that, for the curvature mirror, the lowest coupling loss is obtained when its curvature radius matches the wavefront curvature. In particular, if a plane mirror is used as the cavity mirror, it has to be placed close to the fiber end to obtain the low coupling loss. For the combing mirror, the lowest coupling loss can be obtained when the plane mirror is placed at the back focal plane of the lens, and the variation of the coupling loss is insensitive to the mirror positions for the lens with longer focal length. Finally, the plane mirror and the combing mirror of a lens and a plane mirror are suggested to be the cavity mirror in the practical construction of the high power fiber lasers.  相似文献   

11.
With the purpose of uniform gain coefficient along the axial direction in the core of gain guided and index anti-guided fiber, a new kind of side-pump scheme by wrapping particularly treated fibers around the central GGIAG fiber is reported in this paper. According to leakage mode analysis on wrapped fiber and numerical simulation on this pumping structure having ytterbium doped central fiber and conventional wrapped side fiber, we find this kind of pump scheme can improve the uniformity of gain coefficient along the fiber direction, and also, it can support multi channels of pumping sources by adding more side fibers to improve the total effective incident pumping power.  相似文献   

12.
We demonstrate the 3% mol ytterbium doped phosphate glass air-clad photonic crystal fibre (PCF) laser of 43-cm length in single-mode operation. The fabrication and testing of the laser is introduced. The laser has the diameter of the core of 12 μm created in photonic microstructure and generates at wavelength of 1030 nm. Near 4-W output power and 14.6% slope efficiency against the launched pump power is demonstrated in preliminary characterization. The difference of refractive indices achieved in doped and undoped glass is Δn = 0.0004. We used the doped glass with the negative core-cladding Δn to assure the photonic crystal fibre way of single-mode propagation.  相似文献   

13.
Zhao LM  Tang DY  Cheng TH  Lu C 《Optics letters》2006,31(20):2957-2959
Gain-guided solitons are experimentally observed in dispersion-managed fiber lasers with large net positive group-velocity dispersion. It is shown that formation of the soliton is a robust feature of the lasers. Numerical simulations also confirmed the experimental results.  相似文献   

14.
《Optics Communications》1986,59(4):296-298
Operation of single and multi mode pumped stimulated Brillouin scattering fiber lasers was experimentally investigated. It was found that both are spontaneously mode locked. Pulses as short as 4 ns were obtained.  相似文献   

15.
Vector soliton operation of erbium-doped fiber lasers mode locked with atomic layer graphene was experimentally investigated. Either the polarization rotation or polarization locked vector dissipative solitons were experimentally obtained in a dispersion-managed cavity fiber laser with large net cavity dispersion, while in the anomalous dispersion cavity fiber laser, the phase locked nonlinear Schrödinger equation (NLSE) solitons and induced NLSE soliton were experimentally observed. The vector soliton operation of the fiber lasers unambiguously confirms the polarization insensitive saturable absorption of the atomic layer graphene when the light is incident perpendicular to its 2-dimentional (2D) atomic layer.  相似文献   

16.
A large mode area multicore photonic crystal fiber with a flattened fundamental mode is proposed in this paper. Another two kinds of single core fibers are also presented as comparison. The modal characteristics such as effective mode area and confinement loss are investigated using the finite element method. Numerical results show that a combination of flattened fundamental mode, large mode area and ultralow loss is obtained in the multicore fiber by introducing higher refractive index in the core region.  相似文献   

17.
Magneto-optic Faraday Effect in a miniature coil wound from a microstructured spun-type optical fiber is investigated theoretically and experimentally for the first time. It is shown that such a microstructured fiber allows one to efficiently accumulate the Faraday phase shift in a magnetic field even when the fiber is wound into a coil of very small diameter. For example, a fiber coil of diameter 5 mm with 100 turns has a magneto-optic sensitivity of about 70% of its “ideal” value and agrees well with theoretical data.  相似文献   

18.
A mode-selection method based on a single-mode photonic crystal fiber (PCF) in the multicore fiber (MCF) lasers is presented. The designed PCF has a central core region formed by a missing air-hole, and three air-hole rings. With an appropriate choice of the design parameters of the PCF, the power coupling between the fundamental mode (FM) of the PCF and the fundamental MCF mode can be much higher than those between the FM and the other supermodes. As a result, the fundamental MCF mode has the maximum power reflection coefficient on the right-hand side of the MCF laser cavity, and dominates the output laser power. Since the maximum power of the fundamental MCF mode will lead to the desired laser beam profile, higher the fraction of the fundamental MCF mode power contained in the total output power contributes to higher beam quality. The numerical simulations show that the effectiveness of the fundamental MCF mode-selection is higher in the MCF lasers with the PCF as a mode-selection component than in the MCF lasers based on the free-space Talbot cavity method. Additionally, for the MCF amplifiers, an approach is presented to decrease the sensitivity of the amplifier performance to the variation of Gaussian beam waist utilizing the coupling between the Gaussian beam and the FM of the PCF. The numerical results show that this method can effectively increase the design flexibility for a broad range of the Gaussian beam waist.  相似文献   

19.
A novel kind of single-mode large-mode-area optical fiber is presented in this paper. The proposed fiber core is composed of high-index central rod and the surrounding multilayer rings. The mode characteristics are discussed considering the fiber structure parameters. The calculation results show that the proposed fiber possesses extreme large mode area of 2975 μm2 with single mode operation at the wavelength of 1.08 μm. Even larger mode area of the complex ring core fiber with single mode output can be achieved by coiling the fiber, due to the significant difference of bending loss between the fundamental mode and the higher-order transverse modes. Such fibers are expected to find applications in the field of fiber lasers and amplifiers.  相似文献   

20.
We present the first experimental demonstration of a resolvable mode structure with spacing c/2nL in the RF spectra of ultralong Raman fiber lasers. The longest ever demonstrated laser cavity (L=84 km), RF peaks of ~100 Hz width and spacing ~1 kHz have been observed at low intracavity powers. The width of the peaks increases linearly with growing intracavity power and is almost independent of fiber length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号