首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The remarkably stable SbF(6)(-) salts of the radical cations of bithiophene 1(2T) and terthiophene 1(3T), completely surrounded by bicyclo[2.2.2]octene (BCO) units, were obtained by one-electron oxidation of the neutral precursors with NO(+)SbF(6)(-), and their solid-state structures were determined by X-ray crystallography. In these radical cations, the presence of quinoidal character was apparent, as shown by the increased planarity and by comparison of the bond lengths with those of the neutral precursors. The shortest intermolecular pi-pi distances in the crystal structure of 1(2T)(*)(+)SbF(6)(-) (distance between two sp(2) carbon atoms, 4.89 A) and 1(3T)(*)(+)SbF(6)(-) (distance between an sp(2) carbon and a sulfur atom, 3.58 A) were found to be longer than the sums of the van der Waals radii of the corresponding atoms. In accord with this, no apparent change was observed in ESR and UV-vis-NIR spectra of solutions of 1(2T)(*)(+) and 1(3T)(*)(+) upon lowering the temperature, indicating that the pi- (or sigma-) dimer formation is inhibited in solution as well as in the solid state. The dications 1(2T)(2+) and 1(3T)(2+) were generated with the stronger oxidant SbF(5) in CH(2)Cl(2) at -40 degrees C and characterized by NMR spectroscopy. In the (1)H NMR spectra, two conformers were observed for each dication of both 1(2T)(2+) (transoid (t) and cisoid (c)) and 1(3T)(2+) (t,t and c,t) at room temperature due to the high rotational barrier around the inter-ring bond(s) between thiophene rings, which was caused by the enhanced double bond character of these bonds following two-electron oxidation. This is supported by DFT calculations (B3LYP/6-31G(d)), which predicted the rotational barriers in the dications of unsubstituted bithiophene and terthiophene to be 27.6 and 22.9 kcal mol(-)(1), respectively. In the case of quaterthiophene and sexithiophene surrounded by BCO frameworks 1(4T) and 1(6T), oxidation with even one molar equivalent of NO(+)SbF(6)(-) afforded the dication salts 1(4T)(2+)2SbF(6)(-) and 1(6T)(2+)2SbF(6)(-), which were isolated as stable single crystals and allowed the X-ray crystallography. In their crystal structures, the cationic pi-systems became planar again due to the great contribution of quinoidal resonance structures, and the pi-systems, which were arrayed in a parallel geometry, were also segregated by the steric effect of BCO units. The degree and tendency of changes in the bond lengths of thiophene rings of 1(4T)(2+) and 1(6T)(2+) as compared with neutral precursors were similar to those of 1(2T)(*)(+)SbF(6)(-) and 1(3T)(*)(+)SbF(6)(-), respectively, implying that the contribution of quinoidal character is modulated by the amount of positive charge per thiophene unit.  相似文献   

2.
[structure: see text] Alternate thiophene/furan oligomers having four and six heterocycles, i.e., oligo(thienylfuran) dimer and trimer 2 (n = 4 and 6), were newly synthesized by repetitive Stille coupling reactions. The structural, electronic, and optical properties of these oligomers were investigated by X-ray crystallography (for n = 4), cyclic voltammetry (CV), UV-vis and fluorescence spectroscopy, and DFT calculations, and the results were compared with those of corresponding oligothiophenes (1) and oligofurans (3). The inter-ring torsional energy profiles calculated for bithiophene 1 (n = 2), thienylfuran 2 (n = 2), and bifuran 3 (n = 2) at the B3LYP/6-31G(d) level indicated that the most stable conformers of 2 (n = 2) and 3 (n = 2) are fully coplanar with transoid structure while that of 1 (n = 2) is twisted with a dihedral angle of 158 degrees . In accord with this, X-ray crystallographic analysis of 2 (n = 4) revealed that the pi-conjugated system is nearly planar with the inter-ring C=C-C=C dihedral angles between the thiophene and furan rings of 173.6(7) degrees , -177.0(7) degrees , and 172.6(6) degrees . In the packing structure, these nearly planar molecules are arranged in a herringbone pattern. The CV on a series of oligo(thienylfuran)s 2 showed irreversible oxidation peaks at +0.90, +0.42, and +0.29 V vs Fc/Fc(+) for n = 2, 4, and 6, which were 0.15-0.18 V lower than those for corresponding oligothiophenes 1 and were closer to those for oligofurans 3. On the other hand, the UV-vis spectra of 2 showed the longest wavelength absorption to be almost identical with those of the corresponding 1, and more bathochromically shifted than those of the corresponding 3. The results of CV and UV-vis measurements were supported by DFT calculations (B3LYP/ 6-311+G(2d,p)//B3LYP/6-31G(d)). Thus, oligo(thienylfuran)s 2 have HOMOs which are higher than those of oligothiophenes 1 and close to those of 3, and HOMO-LUMO gaps which are close to those of 1 and smaller than those of 3. In fluorescence spectra, the quantum yield of 2 increased with elongation of the pi-system (n = 2 (3.5%), 4 (19%), 6 (24%)).  相似文献   

3.
Fully conjugated giant macrocyclic oligothiophenes with 60pi, 90pi,120pi, 150pi, and 180pi frames (1, 2, 3, 4 and 5) have been designed, and their butyl-substituted derivatives (1a, 2a, 3a, 4a, and 5a) have been synthesized using modified Sonogashira and McMurry coupling reactions as key steps. The 60-180pi systems 1-5 are circular with 1.8-6 nm inner cavities and 3.3-7.5 nm outside molecular diameters. Compound 1a containing ten 3,4-dibutyl-2,5-thienylene, eight ethynylene, and two vinylene units has been converted into macrocyclic oligo(3,4-dibutyl-2,5-thienylene-ethynylene) 6a using bromination/dehydrobromination procedure. Giant macrocycles 1a-6a exhibit a red shift of their absorption spectra and a fairly strong fluorescence with a large Stokes shift as compared to a linear conjugated counterpart having five thiophene rings. Compounds 1a-6a exhibit multistep reversible redox behaviors with fairly low first oxidation potentials, reflecting their cyclic conjugation. Furthermore, chemical oxidation of 1a-6a with FeCl3 shows drastic changes of spectroscopic properties due to intramolecular and intermolecular pi-pi interactions. Doping of 1a-3a with iodine forms semiconductor due to its pi-donor properties and pi-pi stacking ability. X-ray analysis of 1a confirmed a round, planar structure with nanoscale inner cavity, and revealed host ability for alkanes and unique packing structure. Interestingly, 2a and 3a self-aggregate in the solid state to form "molecular wires," which are about 200 nm thick and more than 1 mm long. The internal structures of fibrous aggregates have been investigated by optical microscope, scanning electron microscopy, atomic force microscopy, and X-ray diffraction analyses.  相似文献   

4.
A series of planar beta-linked oligothiophenes based on thieno[3,2-b]thiophene and dithieno[3,2-b:2',3'-d]thiophene fused units were synthesized. The optical data indicate a blue shift of the absorption maximum in comparison to the alpha-linked analogues due to cross-conjugation between fused rings. The crystal structures of 3,3'-bi(thieno[3,2-b]thiophene) and 3,3';6',3"-ter(thieno-[3,2-b]thiophene) reveal edge-to-face pi-stacked dimer motifs, whereas the crystal structure of 3,3'-bis(dithieno[3,2-b:2',3'-d]thiophene) consists of face-to-face pi-stacked molecules. [structure: see text]  相似文献   

5.
A series of monodisperse oligomers consisting of alternating thiophene (T) and perylene bisimide (P), denoted as (TP)(n)T (n = 1, 2, 3, 6), were synthesized and photophysically characterized. The steady-state absorption and fluorescence spectra revealed that the low-energy P-derived band remains almost unchanged upon the increment of the number of the repeat unit n. This can be rationalized as a consequence of nearly orthogonal molecular geometry and highly-localized electron density at LUMO level based on DFT calculation. A drastic reduction of the fluorescence quantum yields (Φ(F)) of (TP)(n)T was observed with the sequence of (TP)(6)T > (TP)(3)T > (TP)(2)T > (TP)(1)T, as compared to the parent perylene bisimide. Further femtosecond transient absorption studies clarified that the quenching mechanism is intramolecular electron transfer, in which the generated P radical anion was spectrally recognized. The rate of charge separation was found to be on the order of 10(11) s(-1), suggesting an efficient electron transfer reaction between the thiophene and perylene units. Interestingly, the charge separation rate constant increased more than three times upon the increment of n, whereas the charge-recombination rate constant remained almost unchanged at (1.58-2.21) × 10(9) s(-1). Analysis of the kinetic and thermodynamic data using the Marcus approach showed that the enhanced electronic coupling is the origin of the acceleration of electron-transfer reaction in the D-A copolymers.  相似文献   

6.
Three donor–acceptor type π‐conjugated monomers containing 2, 1, 3‐benzothiadiazole (Tz) as the acceptor unit and different thiophene derivatives (thiophene, 3,4‐ethylenedioxythiophene, and thieno[3,2‐b]thiophene) as the donor units have been synthesized via Stille coupling reaction. The corresponding polymers are electrochemically deposited onto FTO glass by cyclic voltammetry (CV). The maximum absorption wavelength of the neutral polymers varies with the electron‐rich character of incorporated thiophene moieties, giving rise to tunable colors. In addition, the prepared polymer films demonstrate reasonable transmittance modulation, fast switching rate, high color efficiency and good stability, which meet the requirements of smart windows and electrochromic display applications. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 2239–2246  相似文献   

7.
Abstract

Two novel thiadiazoloquinoxaline and benzodithiophene (BDT) bearing copolymers were designed and synthesized. Different BDT units (alkoxy and thiophene substituted) were used as donor materials and the effect of alkoxy and thiophene substitution on the electrochemical, spectroelectrochemical and photovoltaic properties were investigated. Both polymers exhibited low oxidation potentials at around 0.90 V and low optical band gaps at around 1.00?eV due to the insertion of electron poor thiadiazoloquinoxaline unit into the polymer backbone. Both P1 (poly-6,7-bis(3,4-bis(decyloxy)phenyl)-4-(4,8-bis(nonan-3-yloxy)benzo[1,2-b:4,5-b']dithiophen-2-yl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) and P2 (poly- 4-(4,8-bis(5-(nonan-3-yl)thiophen-2-yl)benzo[1,2-b:4,5-b']dithiophen-2-yl)-6,7-bis(3,4-bis(decyloxy)phenyl)-[1, 2, 5]thiadiazolo[3,4-g]quinoxaline) exhibited multichromic behavior with different tones of greenish yellow and gray in the neutral and fully oxidized states, respectively. In addition, both polymers revealed very high optical contrasts (~87%) in the NIR region which make these promising polymers good candidates for NIR applications. Finally, in order to explore the organic photovoltaic performances, P1 and P2 were mixed with PC71BM in the active layer of organic solar cells (OSCs) by conventional device structure. As a result P1 and P2 based devices revealed power conversion efficiencies (PCEs) of 0.33% and 0.60% respectively. However, the additive treatment enhanced PCE from 0.49 to 0.73% for P2 based devices.  相似文献   

8.
A pyromellitic diimide building block, 2,6‐bis(2‐decyltetradecyl)?4,8‐di(thiophen‐2‐yl)pyrrolo[3,4‐f]isoindole‐1,3,5,7(2H,6H)‐tetraone ( 4 ), is synthesized. Based on this building block and other electron‐rich units such as 2,2′‐bithiophene, thieno[3,2‐b]thiophene and 4,8‐bis(dodecyloxy)benzo[1,2‐b:4,5‐b′]dithiophene, three conjugated polymers P1 , P2 , and P3 are prepared in good yield via Stille coupling polymerization. These new copolymers have good solubility in common organic solvents and exhibit good thermal stability. The optical, electrochemical, and thermal properties of these polymers P1–P3 are carefully investigated, and their applications in solution‐processed organic field‐effect transistors are also studied. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2454–2464  相似文献   

9.
3,4-Diamino-2-carbethoxy-5-cyanothieno(2,3-b)thiophene (1) was treated with ethylenediamine to afford 3,4-diamino-2,5-bi[2-(4,5-dihydro-1H-imidazole-2-yl]-thieno(2,3-b)thiophene 2 , which in turn was treated with chloroacety chloride to give bis[imidazolothieno diazepine] derivative 3 and with each of p-chlorobenzaldehyde, triethyl orthoformate, and Lawesson's reagent (LR) to yield bis[imidazolothienopyrimidine] derivatives 4-6 . Compound 1 was subjected to Mannich reaction to afford Mannich bases 7 and 8a , b . The later products ( 8a , b ) were treated with malononitrile yielding 9a and 9b . Treatment of compound 1 with CS 2 , NaOH and CH 3 I produced compounds 10 and 11 . The reaction of compound 10 with each of o-aminothiphenal, o-phenylenediamen, hydrazine hydrate, and phenylhydrazine afforded compounds 12a , b , 13a , b . Compound 1 was allowed to react with CS 2 , phenyl (benzoyl)isothiocyanate and phenylisocyanate to get the described products 14-19 , respectively. On reacting compound 1 with ethylcyanoacetate thieno(2,3-b)pyridine derivative 21 was obtained through the intermediate 20 . Finally, compound 1 was treated with malononitrile to yield compound 22 .  相似文献   

10.
A Two series of oligothiophenes 2 (nT) (n=4,5), annelated with bicyclo[2.2.2]octene (BCO) units at both ends, and quaterthiophenes 3 a – c , annelated with various numbers of BCO units at different positions, were newly synthesized to investigate the driving forces of π‐dimerization and the structure–property relationships of the π‐dimers of oligothiophene radical cations. Their radical‐cation salts were prepared through chemical one‐electron oxidation by using nitrosonium hexafluoroantimonate. From variable‐temperature electron spin resonance and electronic absorption measurements, the π‐dimerization capability was found to vary among the members of the 2 (nT)+ . SbF6? series and 3 + . SbF6? series of compounds. To examine these results, density functional theory (DFT) calculations at the M06‐2X/6‐31G(d) level were conducted for the π‐dimers. This level of theory was found to successfully reproduce the previously reported X‐ray structure of ( 2 (3T))22+ having a bent π‐dimer structure with ciscis conformations. The absorption bands obtained by time‐dependent DFT calculations for the π‐dimers were in reasonable agreement with the experimental spectra. The attractive and repulsive forces for the π‐dimerization were divided into four factors: 1) SOMO–SOMO interactions, 2) van der Waals forces, 3) solvation, and 4) Coulomb repulsion, and the effects of each factor on the structural differences and chain‐length dependence are discussed in detail.  相似文献   

11.
This contribution describes the synthesis of novel dehydrobenzannulenes containing CpCo-stabilized cyclobutadiene complexes. These dehydrobenzannulenes were made in two different ways. The first access involves a shotgun approach in which 1,2-diethynyl-3,4-bistrimethylsilylcyclobutadiene(cyclopentadienyl)cobalt and 1,2-diiodobenzene are reacted under Heck-type conditions utilizing (PPh3)2PdCl2 as catalyst. The formation of a dimeric dehydrobenzannulene containing two benzene rings, two cyclobutadiene units and four alkyne units — even though in low yield — was observed. The second approach to organometallic dehydroannulenes involves the construction of a precursor by coupling 1,2-diethynyl-3,4-bistrimethylsilylcyclobutadiene(cyclopentadienyl)cobalt to 1-bromo-2-trimethylsilylethynylbenzene under Pd catalysis, deprotection and Vögtle coupling of the formed precursor to furnish the corresponding monomeric cycle in high yield. This cycle has been characterized by X-ray single-crystal analysis.  相似文献   

12.
Nucleophilic substitution reaction of poly(3-hexylthiophene) (P3HT) with pyridine derivatives as nucleophile was demonstrated in anodic oxidation process. The key reaction involves efficient nucleophilic attack of the pyridine derivatives toward thiophene rings in partly oxidized polymer, i.e., doped state, in the similar manner in which anodic pyridination of electrochemically generated pi-radical cation of a series of oligothiophene takes place in quantitative yield (Y. Li, K. Kamata, T. Kawai, J. Abe and T. Iyoda, J. Chem. Soc., Perkin Trans. 1, 2002, 1135-1140). When 1-methyl-4-(4'-pyridyl)pyridinium hexafluorophosphate (MPP+PF6-) was used as a functional nucleophile, the anodic pyridination reaction gave viologen-tailored poly(3-hexylthiophene) (P3HT), which was confirmed by electrochemical and spectroelectrochemical methods. The introduced ratio of viologen units was about 60% with respect to the polaron, i.e., one-electron oxidized state localized over five thiophene units.  相似文献   

13.
Racemic 2-amino-3-(heteroaryl)propanoic acids (1), mostly with a furan or thiophene nucleus as a heteroaryl group, were synthesized in 48-94% yield by the reduction of 3-(heteroaryl)-2-(hydroxyimino)propanoic acids (5) with zinc dust and formic acid in the presence of a catalytic amount of iron dust at 60 degrees C for 2 h. Under these conditions, unfavorable hydrogenolysis of bromine on the thiophene nucleus does not occur. Traditional N-formylation of the prepared 3-(heteroaryl)alanine (1) with a mixture of formic acid and acetic anhydride afforded 2-(formylamino)-3-(heteroaryl)propanoic acids (6) in 51-95% yield.  相似文献   

14.
Thieno[3,2‐b]thiophene‐substituted benzo[1,2‐b:4,5‐b′]dithiophene donor units (TTBDT) serve as novel promising building blocks for donor–acceptor (D‐A) copolymers in organic photovoltaic cells. In this study, a new D‐A type copolymer (PTTBDT‐TPD) consisting of TTBDT and thieno[3,4‐c]pyrrole‐4,6‐dione (TPD) is synthesized by Stille coupling polymerization. A PTTBDT‐TPD analog consisting of TTBDT and alkylthienyl‐substituted BDT (PTBDT‐TPD) is also synthesized to compare the optical, electrochemical, morphological, and photovoltaic properties of the polymers. Bulk heterojunction photovoltaic devices are fabricated using the polymers as p‐type donors and [6,6]‐phenyl C71‐butyric acid methyl ester (PC71BM) as the n‐type acceptor. The power conversion efficiencies of the devices fabricated using PTTBDT‐TPD and PTBDT‐TPD are 6.03 and 5.44%, respectively. The difference in efficiency is attributed to the broad UV–visible absorption and high crystallinity of PTTBDT‐TPD. The replacement of the alkylthienyl moiety with thieno[3,2‐b]thiophene on BDT can yield broad UV–visible absorption due to extended π‐conjugation, and enhanced molecular ordering and orientation for organic photovoltaic cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 3608–3616  相似文献   

15.
Two new oligothiophenes, the dinitro compound 3',4'-dibutyl-5,5' '-dinitro-2,2':5',2' '-terthiophene (1) and the quinodimethane 3',4'-dibutyl-5,5' '-bis(dicyanomethylene)-5,5' '-dihydro-2,2':5',2' '-terthiophene (2), have been synthesized and studied with electrochemistry, UV-vis-NIR-IR spectroscopy, ESR, and X-ray crystallography. These compounds, designed to be both electron and hole carriers, show redox properties that are unusual for oligothiophenes. Cyclic voltammetry and spectroelectrochemistry demonstrated that each compound could be oxidized to a cation radical and reduced to an anion radical and dianion. The spectra of 2 and its three redox partners were analyzed in terms of a limiting structure in which the neutral 2 has orbitals corresponding to those of a substituted-terthiophene dication. Compound 1 crystallizes with the thiophene rings held in an unusual nonplanar, cisoid configuration in face-to-face pi-stacks, with a spacing between molecules of 3.65 A. The C-C bond lengths of the outer nitro-substituted rings have quinoid character. Compound 2 crystallizes with the thiophene rings in a planar, transoid configuration. The molecules are held in pi-stacks formed from pi-dimers with a spacing between molecules of 3.47 and 3.63 A. The C-C bond distances of the thiophene rings of 1 and 2 and other oligomers were analyzed by a principal component analysis. The analysis found that 93% of the structural variance resided in one principal component related to the quinoid structure of the oligothiophene moiety. The analysis reliably demonstrated a quinoid contribution to the structure of 1. This method should be applicable to understanding the structure of other conjugated molecules in which quinoid structures contribute.  相似文献   

16.
In order to explore the role of fluorine atoms on photostability as well as morphology control of active layer in the presence of 1,4‐butanedithiol (BT), the four polymers with or without fluorine atoms in the backbones including polythieno[3,4‐b]thiophene/benzodithiophene, poly[(4,8‐bis‐(2‐ethylhexyloxy)‐benzo(1,2‐b:4,5‐b9)dithiophene)‐2,6‐diyl‐alt‐(4‐(2‐ethylhexanoyl)‐thieno[3,4‐b]thiophene‐)‐2‐6‐diyl)], poly[4,8‐bis(5‐(2‐ethylhexyl)thiophen‐2‐yl)benzo[1,2‐b;4,5‐b′]dithiophene‐2,6‐diyl‐alt‐(4‐(2‐ethylhexyl)‐3‐fluorothieno[3,4‐b]thiophene‐)‐2‐carboxylate‐2‐6‐diyl)], and poly[4,8‐bis‐(2‐ethyl‐hexyl‐thiophene‐5‐yl)‐benzo[1,2‐b:4,5‐b0]dithiophene‐2,6‐diyl]‐alt‐[2‐(20‐ethyl‐hexanoyl)‐thieno [3,4‐b]thiophen‐4,6‐diyl] were selected for comparison. It is found that the specimens containing fluorine atoms in polymer backbones showed of higher stability after illumination for 1 h in the presence of BT additive, contributing to the higher domain purity. The specific interaction between fluorine atoms and thiol groups was demonstrated by the appearance of novel absorption peak at 2663.1 cm?1, in addition to the broadening of peak at 2556.2 cm?1 ascribing to S? H stretching vibration as confirmed by Fourier transform infrared (FTIR) spectroscopy. The finding may guide the accurate use of thiols as effective solvent additive in morphology and stability optimization. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2019 , 57, 941–951  相似文献   

17.
报道了3种取代聚噻吩,3-己基聚噻吩(P3HT)、3,4-二戊基聚噻吩(P34PT)、3-辛氧基聚噻吩(P3OOT)的合成方法1、H-NMR测试结果及UV-Vis吸收光谱和荧光光谱分析结果。用密度泛函方法计算了无取代噻吩、3-乙基噻吩、3,4-二乙基噻吩、3-乙氧基噻吩二聚体的电子性能。随聚合度的提高,聚合物能隙变窄。无取代噻吩二聚体的能隙为4.216 eV,重复单元长度为0.392 7 nm;乙基取代噻吩二聚体的能隙为4.733 eV,重复单元长度为0.393 9 nm;乙氧基取代噻吩二聚体的能隙为3.890 eV,重复单元长度为0.390 8 nm;双乙基取代噻吩二聚体的能隙为5.168 eV,重复单元长度为0.392 5 nm。理论变化规律与实验结果基本一致。  相似文献   

18.
Poly(3,4-ethylenedioxythiophene) (PEDOT) stands out for its optimized conductivity, stability, and high degree of transparency which has led to its successful commercialization. These excellent properties of PEDOT are mostly ascribed to the alkylenedioxy bridge across the 3- and 4-positions, and thus much effort has been dedicated to synthesizing 3,4-ethylenedioxythiophene (EDOT) analogs. However, only few homologous compounds were successfully synthesized, such as 3,4-propylenedioxythiophene (PrDOT) or 3,4-(1,4-butylenedioxy)thiophene (BuDOT). In this Letter, we use Mitsunobu reaction to synthesize a series of 3,4-alkylenedioxythiophenes (ADOTs) derivatives with 8- to 16-membered rings. The eight-membered compounds were obtained in high or excellent yield. We also found that the 9- to 16-membered EDOT analogs were obtained in relatively low yield because of the competitive reaction to make dimers. Our method provides an easy way to modify ethylenedioxythiophenes (EDOTs), and these obtained ADOTs compounds are promising building blocks for the synthesis of functional π-conjugated systems used in material chemistry.  相似文献   

19.
We have established a series of synthetic methods to synthesize alkyl-substituted fused thiophenes with degrees of fusion from two to seven rings. These fused thiophene ring compounds have very good solubility in common organic solvents, making possible the solution processing of these compounds for electronic applications. The UV absorption of these fused thiophenes is blue-shifted when compared with their hydrocarbon counterparts. The larger band gaps result in much better stability. Single-crystal X-ray results for 3,6-didecanyldithieno[2,3-d:2',3'-d']thieno[3,2-b:4,5-b']dithiophene (FT5) and 3,7-didecanylthieno[3,2-b]thieno[2',3':4,5]thieno[2,3-d]thiophene (FT4) demonstrate that both compounds form pi-stacking structures instead of a herringbone-type of packing motif. This more favorable pi-stacked structure may lead to better material electronic properties such as mobility in devices fabricated with these compounds.  相似文献   

20.
Novel pyridazino[4,5-b][1,4]oxazine-3,5-diones were synthesized from N-[2-(3,4-dimethoxyphenyl)-ethyl]-2-chloroacetamide (or 2-chloropropanamide) and 1-alkyl-5-halo-4-hydroxypyridazin-6-ones in good yield.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号