首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Substitution of Ge4+ in place of Cu in Tl0.85Cr0.15Sr2CaCu2?xGexO7?δ (x = 0–0.6) showed initial increase in zero critical temperature value, Tc zero from 98 K (x = 0) to 100 K (x = 0.1) and in the range of 85–86 K for x = 0.2–0.3. The slow decrease in Tc zero is unexpected as tetravalent Ge4+ substitution is expected to strongly reduce hole concentration in the samples and suppress Tc zero. Excess conductivity analyses of resistance versus temperature data based on Asmalazov–Larkin (AL) theory revealed that the substitution induced 2D-to-3D transition of fluctuation induced conductivity with the highest transition temperature, T2D3D observed at x = 0.1. FTIR spectroscopy analysis indicates Ge4+ substitution cause reduction in CuO2/GeO2 interplanar distance while our calculation based on Lawrence–Doniach model revealed highest superconducting coherence length, ξc(0) and interplanar coupling, J at x = 0.3. On the other hand, substitution of divalent Mg2+ for Ca2+ in (Tl0.5Pb0.5)(Sr1.8Yb0.2)(Ca1?yMgy)Cu2O7 (y = 0–1.0), which is not expected to directly vary hole concentration, surprisingly caused Tc zero to increase from 89.6 K (y = 0) to an optimum value of 95.9 K (y = 0.6) before decreasing with further increase in y. Excess conductivity analyses showed 2D-to-3D transition of fluctuation induced conductivity for all samples where the highest T2D3D was at y = 0.4. Similar calculation revealed highest values of ξc(0) and J also at y = 0.4. FTIR analysis of the samples indicates inequivalent Cu(1)O(2)Pb/Tl lengths and possible tilting of CuO2 plane as a result of Mg2+ substitution. The increased ξc(0) and J as a result of the Ge4+ and Mg2+ substitutions are suggested to contributed to sustenance of superconductivity above 80 K in the samples.  相似文献   

2.
High-peak-power, short-pulse-width diode pumped 946 nm Nd:YAG laser in passively Q-switching operation with Cr4+:YAG is reported. The highest average output power reaches 3.4 W using the Cr4+:YAG with initial transmissivity T0=95%. When the T0=90% Cr4+:YAG is employed, the maximum peak power of 31.4 kW with a pulse width of 8.3 ns at 946 nm is generated.  相似文献   

3.
The polycrystalline samples of Zn-doped Fe1−xZnxCr2S4 (0⩽x⩽1) were prepared by the conventional solid-state synthesis method. The magnetic homogeneity has been proved by the measurements of the alternating current (AC) magnetic susceptibility. We presented a detailed study of Zn-doping effect on the magnetism. It is found that the magnetism does not change monotonically with substituting nonmagnetic Zn2+ ions for Fe2+ ions. The difference between the magnetic moments for the samples with respective doping level can be ascribed to the variation of compensation between the Fe2+ and Cr3+ sublattices as the Fe2+ concentration is varied. The Zn-doping leads to spin reversal of Cr3+ ions. Based on the spin orientation of Fe2+ and Cr3+ ions in FeCr2S4 and ZnCr2S4 at 0 K, we suggest a phenomenological model describing the magnetism and the doping level dependence of the up-spin proportion of Cr3+ ions. The up-spin proportion of Cr3+ ions, denoted by y, as a function of doping level in zero fields is linear. However, y in magnetic fields cannot be fitted linearly, which shows a maximum. The above results can be described qualitatively by the effect of the applied magnetic field on the AB, AA, and BB interactions of the spinels with the formula ABS4.  相似文献   

4.
Dimensionality effects on epitaxial and polycrystalline Cr1?xRux alloy thin films and in Cr/Cr–Ru heterostructures are reported. X-ray analysis on Cr0.9965Ru0.0035 epitaxial films indicates an increase in the coherence length in growth directions (1 0 0) and (1 1 0) with increasing thickness (d), in the range 20≤d≤300 nm. Atomic force microscopy studies on these films shows pronounced vertical growth for d>50 nm, resulting in the formation of columnar structures. The Néel temperatures (TN) of the Cr0.9965Ru0.0035 films show anomalous behaviour as a function of d at thickness d≈50 nm. It is interesting to note that this thickness corresponds to that for which a change in film morphology occurs. Experiments on epitaxial Cr1?xRux thin films, with 0≤x≤0.013 and d=50 nm, give TNx curves that correspond well with that of bulk Cr1?xRux alloys. Studies on Cr/Cr0.9965Ru0.0035 superlattices prepared on MgO(1 0 0), with the Cr layer thickness varied between 10 and 50 nm, keeping the Cr0.9965Ru0.0035 thickness constant at 10 nm, indicate a sharp decrease in TN as the Cr separation layers reaches a thickness of 30 nm; ascribed to spin density wave pinning in the Cr layers for d<30 nm by the adjacent CrRu layers.  相似文献   

5.
《Solid State Ionics》2006,177(9-10):863-868
Layered Li(Ni0.5Co0.5)1−yFeyO2 cathodes with 0  y  0.2 have been synthesized by firing the coprecipitated hydroxides of the transition metals and lithium hydroxide at 700 °C and characterized as cathode materials for lithium ion batteries to various cutoff charge voltages (up to 4.5 V). While the y = 0.05 sample shows an improvement in capacity, cyclability, and rate capability, those with y = 0.1 and 0.2 exhibit a decline in electrochemical performance compared to the y = 0 sample. Structural characterization of the chemically delithiated Li1−x(Ni0.5Co0.5)1−yFeyO2 samples indicates that the initial O3 structure is maintained down to a lithium content (1  x)  0.3. For (1  x) < 0.3, while a P3 type phase is formed for the y = 0 sample, an O1 type phase is formed for the y = 0.05, 0.1 and 0.2 samples. Monitoring the average oxidation state of the transition metal ions with lithium contents (1  x) reveals that the system is chemically more stable down to a lower lithium content (1  x)  0.3 compared to the Li1−xCoO2 system. The improved structural and chemical stabilities appear to lead to better cyclability to higher cutoff charge voltages compared to that found before with the LiCoO2 system.  相似文献   

6.
A thin interlayer of samarium doped ceria (SDC) is applied as diffusion barrier between La1 ? xSrxCoyFe1 ? yO3 x = 0.1–0.4, y = 0.2–0.8 (LSCF) cathode and La1.8Dy0.2Mo1.6W0.4O9 (LDMW82) electrolyte to obstruct Mo–Sr diffusion and solid state reaction in the intermediate temperature range of SOFC. We demonstrate the effectiveness of the diffusion barrier through contrasting the clearly defined interfaces of LSCF/SDC/LDMW82 against a rugged growing product layer of LSCF/LDMW82 in 800 °C thermal annealing, and analyze the product composition and the probable new phase. In addition, the measured polarization resistance is considerably lower for the half-cell with a diffusion barrier. Therefore, the electrochemical performance of the LSCF cathode is investigated on the SDC-protected LDMW82. The cell with LSCF (x = 0.4) persistently outperforms the one with x = 0.2 in polarization resistance because of its small low-frequency contribution. The activation energy of polarization resistance is also lower for La0.6Sr0.4CoyFe1 ? yO3 (112–135 kJ/mol), than that for La0.8Sr0.2CoyFe1 ? yO3 (156–164 kJ/mol). La0.6Sr0.4CoyFe1 ? yO3 y = 0.4–0.8 is the proper composition for the cathode interfaced to SDC/LDMW82.  相似文献   

7.
The carck-free Fe-based +20 wt% WC coating with large area was produced by mutli-track overlapping laser induction hybrid rapid cladding. The results showed that the maximum laser scanning speed and the maximum feeding rate of powder can be increased to 3500 mm/min and 120 g/min, respectively. The cast WC particles were dissolved almost completely and had a worse wettability with Fe-based metal matrix. The precipitated carbides such as M12C and M23C6 (M=Fe, W, Cr) formed an intergranular network around the primary Fe-based phase enriched with tungsten. The microhardness of coating decreased first, and then increased slightly with an increase in the track. The first track had the highest microhardness (i.e. 870HV0.2). Moreover, the wear weight of coating approximately had a linear relationship with the sliding distance, and increased with an increase in the sliding speed. The wear rate approximately remained constant with an increase in the sliding distance and was two times lower than that of the hardened steel AISI 1045 with a hardness of 60HRC. The wear mechanism during the dry sliding wear was a combination of oxidation wear and abrasion wear.  相似文献   

8.
Based on the pseudopotential formalism under the virtual crystal approximation, the dielectric and lattice vibration properties of zinc-blende InAs1−xySbxPy quaternary system under conditions of lattice matching and lattice mismatching to InAs substrates have been investigated. Generally, a good agreement is noticed between our results and the available experimental and theoretical data reported in the literature. The variation of all features of interest versus either the composition parameter x or the lattice mismatch percentage is found to be monotonic and almost linear. The present study provides more opportunities to get diverse high-frequency and static dielectric constants, longitudinal and transversal optical phonon modes and phonon frequency splitting by a proper choice of the composition parameters x and y (0  x  0.30, 0  y  0.69) and/or the lattice mismatch percentage.  相似文献   

9.
10.
《Solid State Ionics》2006,177(19-25):1799-1802
Manganese-doped ceria-based oxides, Ce1−xMnxO2−δ (0.05  x  0.3) and Ce1−xyGdxMnyO2−δ˙ (0.05  x 0.2, 0.05  y  0.25) were synthesized, and crystal phase analysis by XRD and measurements of electrical properties were performed. Solubility limit of Mn in Ce1−xMnxO2−δ˙ seemed to be between 5 mol% and 10 mol% and Mn3O4 was the main by-product above the solubility limit in the case of heat treatment at 1300 °C. Judging from the oxygen partial pressure dependence of total conductivity and emf measurements, Ce1−xMnxO2−δ˙ is a single-phase mixed conductor within the composition below the solubility limit, and when the composition of Mn exceeds the solubility limit, it becomes the dual-phase mixed conductor of Ce1−xMnxO2−δ˙ and Mn3O4. The doing of Mn in gadlia-doped ceria, Ce1−xyGdxMnyO2−δ˙ (0.05  x  0.2, 0.05  y  0.25), was more difficult than that in CeO2 presumably due to the preferential reaction between Gd and Mn to give GdMnO3 to the GDC solid solution formation, and the Mn doping seems not to be so effective in preparing the mixed ionic–electronic conductor based on GDC.  相似文献   

11.
Ba1?xKxBiO3 with x from 0.315 to 0.6 were successfully synthesized by molten salts method and characterized by XRD and magnetic susceptibility measurements. It is found that Ba1?xKxBiO3 powders could directly be precipitated from KOH melts. Superconductivity has been observed in all samples and the highest superconducting transition temperature was found to be Tc = 30.6 K with x = 0.4. The lattice constant linearly depended on the potassium content in accord with the equation of a = 4.3548–0.1743x, and the decrease of the mole ratio of Bi3+/Bi5+ resulted in the increase of the potassium content, which suggested the disproportionation of Bi valence.  相似文献   

12.
Divalent europium-doped alkaline earth metal silicate phosphors, (Ba1?x?ySryEux)9Sc2Si6O24 (x=0.005–0.1, y=0–0.95), have been successfully prepared by solid-state reaction at 1350 °C. The analysis of X-ray diffraction shows that the compounds are in a single phase at the proper concentration of Sr2+. At room temperature, the Eu2+-activated Ba9Sc2Si6O24 phosphor exhibits a single emission band peaking at about 506 nm. With the increasing content of Sr2+, the luminescent intensity of (Ba1?x?ySryEux)9Sc2Si6O24 weakens, and the emission peak shifts towards red. Luminescence concentration quenching occurs when Eu2+ content x is more than 1 mol% in (Ba1?x?ySryEux)9Sc2Si6O24 (y=0/0.2). At low temperatures (Ba0.9?ySryEu0.1)9Sc2Si6O24 (y=0/0.2) phosphors have two emission bands corresponding to different Eu2+ crystallographic sites. The high energy peak (P1) is quenched at room temperature, while the low energy peak (P2) weakens much more slowly owing to the energy transfer from P1 to P2.  相似文献   

13.
In the present paper, the effects of nitridation on the quality of GaN epitaxial films grown on Si(1 1 1) substrates by metal–organic chemical vapor phase deposition (MOCVD) are discussed. A series of GaN layers were grown on Si(1 1 1) under various conditions and characterized by Nomarski microscopy (NM), atomic force microscopy (AFM), high resolution X-ray diffraction (HRXRD), and room temperature (RT) photoluminescence (PL) measurements. Firstly, we optimized LT-AlN/HT-AlN/Si(1 1 1) templates and graded AlGaN intermediate layers thicknesses. In order to prevent stress relaxation, step-graded AlGaN layers were introduced along with a crack-free GaN layer of thickness exceeding 2.2 μm. Secondly, the effect of in situ substrate nitridation and the insertion of an SixNy intermediate layer on the GaN crystalline quality was investigated. Our measurements show that the nitridation position greatly influences the surface morphology and PL and XRD spectra of GaN grown atop the SixNy layer. The X-ray diffraction and PL measurements results confirmed that the single-crystalline wurtzite GaN was successfully grown in samples A (without SixNy layer) and B (with SixNy layer on Si(1 1 1)). The resulting GaN film surfaces were flat, mirror-like, and crack-free. The full-width-at-half maximum (FWHM) of the X-ray rocking curve for (0 0 0 2) diffraction from the GaN epilayer of the sample B in ω-scan was 492 arcsec. The PL spectrum at room temperature showed that the GaN epilayer had a light emission at a wavelength of 365 nm with a FWHM of 6.6 nm (33.2 meV). In sample B, the insertion of a SixNy intermediate layer significantly improved the optical and structural properties. In sample C (with SixNy layer on Al0.11Ga0.89N interlayer). The in situ depositing of the, however, we did not obtain any improvements in the optical or structural properties.  相似文献   

14.
《Solid State Ionics》2006,177(35-36):3199-3203
A co-dopant strategy is used to investigate the effect that the elastic strain in the lattice has on the grain ionic conductivity of doped ceria electrolytes. Based on critical dopant ionic radius (rc), different compositions in the LuxNdyCe1−xyO2−δ (x + y = 0.05, 0.10, 0.15, and 0.20) system are studied. Dopants are added such that the weighted average dopant ionic radius matches rc for all the compositions. Dense ceramic discs are prepared using conventional solid oxide route and sintering methods. Precise lattice parameter measurements are used to calculate the lattice strain. The ionic conductivity of the samples is measured in the temperature range of 250 °C to 700 °C using two-probe electrochemical impedance spectroscopy technique. The elastic strain present in LuxNdyCe1−xyO2−δ system is found to be negligible when compared to LuxCe1−xO2−δ (negative) and NdxCe1−xO2−δ (positive) systems. Grain ionic conductivity of LuxNdyCe1−xyO2−δ (where x + y = 0.05) at 500 °C is observed to be 1.9 × 10 3 S/cm which is twice as high as that of Lu0.05Ce0.95O2−δ. These results extend the validity of the rc concept as a strategy for co-doping ceria electrolytes and open new designing avenues for solid oxide electrolytes with enhanced ionic conductivity.  相似文献   

15.
The vortex structure in p-wave superconductors is investigated by the Bogoliubov–de Gennes theory on a tight-binding model. We calculate the temperature dependence of the electronic state at each site in the vortex lattice state, and show the difference between sin px+i sin py-wave and sin px−i sin py-wave superconducting state. Furthermore the relation of the electronic structure and the site-dependence of the nuclear magnetic relaxation time is also discussed.  相似文献   

16.
The surface topography and fractal properties of GexSb(As)40−xS50Te10 (x = 10, 20, 27 at.%) films, evaporated onto glass substrates, have been studied by atomic force microscopic imaging at different scales. The surface of the chalcogenide films is smooth (<5 nm roughness), isotropic and having some particular differences in texture. All films are self-similar with Mean Fractal Dimension in the range of 2.25–2.63. The films with GexSb40−xS50Te10 composition are more uniform in terms of surface morphology (grains structure) than those with GexAs40−xS50Te10 composition for which the film surface exhibits a superimposed structure of large particles at x = 10 and 20 at.%.  相似文献   

17.
Hexagonal Ba1.20Ca0.8?2x?ySiO4:xCe3+,xLi+,yMn2+ phosphors exhibit two emission bands peaking near 400 and 600 nm from the allowed f–d transition of Ce3+ ions and the forbidden 4T16A1 transition of Mn2+ ions, respectively. The strong interaction between Ce3+/Mn2+ ions is investigated in terms of energy transfer, crystal field effect, and microstructure by varying their concentrations. They show a higher quenching temperature of 250 °C than that of a commercially used (Ba,Sr)2SiO4:Eu2+ phosphor (150 °C). Finally, mixtures of these phosphors with green-emissive Ba1.20Ca0.70SiO4:0.10Eu2+ are tested and yielded correlated color temperatures from 3500 to 7000 K, and color rendering indices up to 95%.  相似文献   

18.
With Nd3+ doping and Ca2+, Sr2+ modulating in the sol–gel technique, a series of polycrystalline perovskite samples La0.7?xNdx(Ca,Sr)0.3MnO3 (x = 0, 0.05, 0.1, 0.15, 0.20, 0.25) was prepared, their maximum magnetic entropy changes were tuned to room temperature (ΔSH = ?1.47 J/kg K at 298 k for La0.45Nd0.25(Ca,Sr)0.3MnO3), an enhancement of the maximum magnetic entropy change (ΔSH = ?1.89 J/kg K at 315 k) and its refrigerant capacity (about 45.3 J/kg) had also been obtained under 9 kOe magnetic field variation for La0.55Nd0.15(Ca,Sr)0.3MnO3 contrast to La0.7(Ca,Sr)0.3MnO3.  相似文献   

19.
《Solid State Ionics》2006,177(13-14):1199-1204
Perovskite oxides of the composition BaxSr1−xCo1−yFeyO3−δ(BSCF) were synthesized via a modified Pechini method and characterized by X-ray diffraction, dilatometry and thermogravimetry. Investigations revealed that single-phase perovskites with cubic structure can be obtained for x  0.6 and 0.2  y  1.0. The as-synthesized BSCF powders can be sintered in several hours to nearly full density at temperatures of over 1180 °C. Thermal expansion curves of dense BSCF samples show nonlinear behavior with sudden increase in thermal expansion rate between about 500 °C and 650 °C, due mainly to the loss of lattice oxygen caused by the reduction of Co4+ and Fe4+ to lower valence states. Thermal expansion coefficients (TECs) of BSCF were measured to be 19.2–22.9 × 10 6 K 1 between 25 °C and 850 °C. Investigations showed further that Ba0.5Sr0.5Co0.8Fe0.2O3−δ is chemically compatible with 8YSZ and 20GDC for temperatures up to 800 °C, above which severe reactions were detected. After being heat-treated with 8YSZ or 20GDC for 5 h above 1000 °C, Ba0.5Sr0.5Co0.8Fe0.2O3−δ was completely converted to phases like SrCoO3−δ, BaCeO3, BaZrO3, etc.  相似文献   

20.
New red tungstates phosphors, Na5La1?xLnx(WO4)4 (Ln = Eu, Sm) and Na5Eu1?xSmx(WO4)4, were prepared by solid-state reaction technique. And their structure and photo-luminescent properties were investigated. The introduction of Sm3+ broadened the excitation band around 400 nm of the phosphors, and strengthened the red emission. And the possible energy transfer process from Sm3+ to Eu3+ is discussed. The single red LED was fabricated by combining InGaN chip with Na5Eu0.94Sm0.06(WO4)4 as red phosphor, intense red light can be observed by naked eyes. Then the phosphor Na5Eu0.94Sm0.06(WO4)4 may be a good candidate for red component of near-UV InGaN-based W-LEDs, because of efficient red-emitting with broadened absorption around 400 nm and appropriate CIE chromaticity coordinates (x = 0.65, y = 0.34).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号