首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Waves mentioned in the title were revealed in composite materials that are described by the microstructural theory of the second order — the theory of two-phase mixtures. For harmonic periodic waves, a mixture is always a dispersive medium. This medium admits existence of other waves — waves with profiles described by functions of mathematical physics (the Chebyshov–Hermite, Whittaker, Mathieu, and Lamé functions). If the initial profile of a plane wave is chosen in the form of the Chebyshev–Hermite or Whittaker function, then the wave may be regarded as an aperiodic solitary wave. The dispersivity of a mixture as a nonlinear frequency dependence of phase velocities transforms for nonperiodic solitary waves into a nonlinear phase-dependence of wave velocities. This and some other properties of such waves permit us to state that these waves fall into a new class of waves in materials, which is intermediate between the classical simple waves and the classical dispersion traveling waves. The existence of these new waves is proved in a computer analysis of phase-velocity-versus-phase plots. One of the main results of the interaction study is proof of the existence of this interaction itself. Some features of the wave interaction — triplets and the concept of synchronization — are commented on  相似文献   

3.
We consider the damping of large-amplitude solitary waves in the framework of the extended Korteweg-de Vries equation (that is, the usual Korteweg-de Vries equation supplemented with a cubic nonlinear term) modified by the inclusion of a small damping term. The damping of a solitary wave is studied for several different forms of friction, using both the analytical adiabatic asymptotic theory and numerical simulations. When the coefficient of the cubic nonlinear term has the opposite sign to the coefficient of the linear dispersive term, the extended Kortweg-de Vries equation can support large-amplitude “thick” solitary waves. Under the influence of friction, these “thick” solitary waves decay and may produce one or more secondary solitary waves in this process. On the other hand, when the coefficient of the cubic nonlinear term has the same sign as the coefficient of the linear dispersive term, but the opposite sign to the coefficient of the quadratic nonlinear term, the action of friction may cause a solitary wave to decay into a wave packet.  相似文献   

4.
A new group of wavelets that have the form of solitary waves and are the solutions of the wave equations for dispersive media is proposed to call elastic wavelets. That this group includes well-known Mexican-hat wavelets is proved. It is proposed to use elastic wavelets to study local features of the profile evolution of a solitary wave in an elastic dispersive medium  相似文献   

5.
In this paper, we consider the higher order Boussinesq (HBq) equation which models the bi-directional propagation of longitudinal waves in various continuous media. The equation contains the higher order effects of frequency dispersion. The present study is devoted to the numerical investigation of the HBq equation. For this aim a numerical scheme combining the Fourier pseudo-spectral method in space and a Runge–Kutta method in time is constructed. The convergence of semi-discrete scheme is proved in an appropriate Sobolev space. To investigate the higher order dispersive effects and nonlinear effects on the solutions of HBq equation, propagation of single solitary wave, head-on collision of solitary waves and blow-up solutions are considered.  相似文献   

6.
We consider herein the Ostrovsky equation which arises in modeling the propagation of the surface and internal solitary waves in shallow water, or the capillary waves in a plasma with the effects of rotation. Using the modified sliding method, we prove that the solitary wave moving to the left to the Ostrovsky equation is symmetric about the origin and unique up to translations. We also establish the regularity and decay properties of solitary waves and obtain some results of the nonexistence of solitary wave solutions depending on the wave speed, weak rotation, and dispersive parameter.  相似文献   

7.
The latest results relating to the theory of nonlinear waves in dispersive and dissipative media are reviewed. Attention is concentrated on small-amplitude solitary waves and, in particular, on the classification of types of solitary waves, their conditions of existence, the evolution of local perturbations associated with the presence of solitary waves of various types, and problems of the existence of nonlinear waves localized with respect to a particular direction as the space dimension increases (spontaneous dimension breaking). As examples of dispersive and dissipative media admitting plane solitary waves of various types, we consider a cold collisionless plasma, an ideal incompressible fluid of finite depth beneath an elastic plate and with surface tension, and a fluid in a rapidly oscillating rectangular vessel (Faraday resonance). Examples of spontaneous dimension breaking are considered for the generalized Kadomtsev-Petviashvili equation. Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 2, pp. 3–27. March–April, 2000. The work was carried out with financial support from the Russian Foundation for Basic Research (project No. 99-0101150).  相似文献   

8.
王贺  吴卫  刘桦 《力学季刊》2015,36(1):26
基于RANS方程、VOF方法以及修正的Goring造波方法建立了模拟活塞式推波板运动的二维数值波浪水槽,实现了双孤立波直墙爬高的数值模拟.利用动边界技术模拟造波机推波板的运动,有效地实现了不同波峰间距双孤立波的造波方法.在验证单孤立波直墙爬高的基础上,模拟了不同相对波高、相对波峰间距的等波高双孤立波的直墙爬高过程,给出了波面、速度场及波动能量的变化规律.数值模拟结果表明:对于等波高的双孤立波,当入射波波高较大及两个波峰间距相对较小时,跟随在后孤立波的爬高放大系数小于先导孤立波的爬高放大系数;双孤立波在直墙爬高过程中,波动场的势能时间过程线呈现三峰形态,其中居中的最大势能峰值出现在第二个孤立波与经直墙反射后反向传播的第一个孤立波完全对撞的时刻.  相似文献   

9.
The dynamics and energetics of a frontal collision of internal solitary waves (ISW) of first mode in a fluid with two homogeneous layers separated by a thin interfacial layer are studied numerically within the framework of the Navier–Stokes equations for stratified fluid. It was shown that the head-on collision of internal solitary waves of small and moderate amplitude results in a small phase shift and in the generation of dispersive wave train travelling behind the transmitted solitary wave. The phase shift grows as amplitudes of the interacting waves increase. The maximum run-up amplitude during the wave collision reaches a value larger than the sum of the amplitudes of the incident solitary waves. The excess of the maximum run-up amplitude over the sum of the amplitudes of the colliding waves grows with the increasing amplitude of interacting waves of small and moderate amplitudes whereas it decreases for colliding waves of large amplitude. Unlike the waves of small and moderate amplitudes collision of ISWs of large amplitude was accompanied by shear instability and the formation of Kelvin–Helmholtz (KH) vortices in the interface layer, however, subsequently waves again become stable. The loss of energy due to the KH instability does not exceed 5%–6%. An interaction of large amplitude ISW with even small amplitude ISW can trigger instability of larger wave and development of KH billows in larger wave. When smaller wave amplitude increases the wave interaction was accompanied by KH instability of both waves.  相似文献   

10.
We extend the framework of the finite volume method to dispersive unidirectional water wave propagation in one space dimension. In particular, we consider a KdV–BBM‐type equation. Explicit and implicit–explicit Runge–Kutta‐type methods are used for time discretizations. The fully discrete schemes are validated by direct comparisons to analytic solutions. Invariants' conservation properties are also studied. Main applications include important nonlinear phenomena such as dispersive shock wave formation, solitary waves, and their various interactions. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

11.
Studies on the oblique interactions of weakly nonlinear long waves in dispersive systems are surveyed. We focus mainly our concentration on the two-dimensional interaction between solitary waves. Two-dimensional Benjamin–Ono (2DBO) equation, modified Kadomtsev–Petviashvili (MKP) equation and extended Kadomtsev–Petviashvili (EKP) equation as well as the Kadomtsev–Petviashvili (KP) equation are treated. It turns out that a large-amplitude wave can be generated due to the oblique interaction of two identical solitary waves in the 2DBO and the MKP equations as well as in the KP-II equation. Recent studies on exact solutions of the KP equation are also surveyed briefly.  相似文献   

12.
In this work, we present higher order solitary wave equations, in particular sixth order. We show how these equations can be derived using fundamental physics laws, such as the Ohm’s law. We use the Taylor series expansion and in some cases the Hirota’s bilinear operator to obtain these model equations. The sixth order solitary wave equations model different physical problems such as problems in the electrical domain and the propagation of dispersive water waves.  相似文献   

13.
14.
A spectral solution of the equal width (EW) equation based on the collocation method using Chebyshev polynomials as a basis for the approximate solution has been studied. Test problems, including the migration of a single solitary wave with different amplitudes are used to validate this algorithm which is found to be accurate and efficient. The three invariants of the motion are evaluated to determine the conservation properties of the algorithm. The interaction of two solitary waves is seen to cause the creation of a source for solitary waves. Usually these are of small magnitude, but when the amplitudes of the two interacting waves are opposite, the source produces trains of solitary waves whose amplitudes are of the same order as those of the initial waves. The three invariants of the motion of the interaction of the three positive solitary waves are computed to determine the conservation properties of the system. The temporal evaluation of a Maxwellian initial pulse is then studied. Comparisons are made with the most recent results both for the error norms and the invariant values.  相似文献   

15.
Boussinesq models describe the phase‐resolved hydrodynamics of unbroken waves and wave‐induced currents in shallow coastal waters. Many enhanced versions of the Boussinesq equations are available in the literature, aiming to improve the representation of linear dispersion and non‐linearity. This paper describes the numerical solution of the extended Boussinesq equations derived by Madsen and Sørensen (Coastal Eng. 1992; 15 :371–388) on Cartesian cut‐cell grids, the aim being to model non‐linear wave interaction with coastal structures. An explicit second‐order MUSCL‐Hancock Godunov‐type finite volume scheme is used to solve the non‐linear and weakly dispersive Boussinesq‐type equations. Interface fluxes are evaluated using an HLLC approximate Riemann solver. A ghost‐cell immersed boundary method is used to update flow information in the smallest cut cells and overcome the time step restriction that would otherwise apply. The model is validated for solitary wave reflection from a vertical wall, diffraction of a solitary wave by a truncated barrier, and solitary wave scattering and diffraction from a vertical circular cylinder. In all cases, the model gives satisfactory predictions in comparison with the published analytical solutions and experimental measurements. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

16.
We numerically study nonlinear phenomena related to the dynamics of traveling wave solutions of the Serre equations including the stability, the persistence, the interactions and the breaking of solitary waves. The numerical method utilizes a high-order finite-element method with smooth, periodic splines in space and explicit Runge–Kutta methods in time. Other forms of solutions such as cnoidal waves and dispersive shock waves are also considered. The differences between solutions of the Serre equations and the Euler equations are also studied.  相似文献   

17.
The leading tail for slowly varying solitary waves for the perturbed Korteweg-de Vries (KdV) equation is analyzed. The path of the core of the solitary wave is obtained and shown to provide a moving boundary for the leading tail. The leading tail is predicted to be triple valued within a penumbral caustic (envelope of characteristics) caused by the initial acceleration of the core. A rescaling in the neighborhood of the singularity shows that the solution there satisfies the diffusion equation. The solution involves an incomplete Airy-type exponential integral, where critical points (significant for Laplace's asymptotic method) satisfy the structure of the penumbral caustic. A wave number shock develops, which separates two different solitary wave tails, one due to the moving core and the other due to the initial condition. The shock velocity is that predicted from conservation of waves.  相似文献   

18.
Two-dimensional solitary waves at the surface of a film flow down a vertical plane are considered. When the system is subjected to inlet white noise, solitary waves are formed after an inception region and interact with each other. Using open-domain simulations of reduced equation models, we investigate numerically their late time process dynamics. Close to the instability threshold, the waves synchronize themselves into bound states. For higher values of the Reynolds number, the separation distance between the waves increases and the synchronization process at work is weaker. Performing statistics, we show that the mean characteristics of the waves correspond to the minimal value of the mean film thickness along the traveling-wave branch of solutions. In this regime, synchronization occurs through the waves tails which is associated with a change of scaling of the waves features. A similar behavior is observed performing simulations in periodic domains: the selected waves maximize the mean flow rate.  相似文献   

19.
一维颗粒链的一端受到一个有初速度颗粒的撞击,导致颗粒连中产生稳定传播的应力波——高度非线性孤立波,该应力波的波长、波速以及幅值都能保持很好的稳定性,且遇到边界才会反射.孤立波是一种良好的信息载体,广泛应用于无损检测技术中.基于孤立波的特性,研究高度非线性孤立波与弹性大板耦合作用,基于赫兹定律和板的内在非弹性理论,推导出晶体链与大板的耦合微分方程组.用龙格库塔法求解该微分方程组,得到颗粒链中各颗粒的位移、速度曲线.通过分析回弹波出现的时间、回弹波所携带的能量以及模量、厚度、重力等对孤立波的影响,发现反射孤立波对大板的弹性模量和厚度尤为敏感,此外,颗粒链的摆放对整个耦合过程也有影响.研究的结果为孤立波对结构体的无损探伤提供了理论依据,该技术可实现对结构体的快速检查和可控性研究.  相似文献   

20.
Diffraction of a solitary wave by a thin wedge   总被引:1,自引:0,他引:1  
The diffraction of a solitary wave by a thin wedge with vertical walls is studied when the incident solitary wave is directed along the wedge axis. The method of multiple scales is extended to this problem and reduces the task to that of solving the two-dimensional KdV equation with proper boundary and initial conditions. The finite-difference numerical procedure is carried out with the fractional step algorithm in which difference schemes are all implicit. Except the maximum run-up at the wall, the results in this paper are found to corroborate the Melville's experiments not only qualitatively but also quantitatively. The maximum run-up of our results agrees well with Funakoshi's numerical one but it is considerably larger than that in Melville's experiment. An important reason for this discrepancy is believed to be the effect of viscous boundary layer on the vertical side wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号