首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cloaking of a circular cylindrical elastic inclusion embedded in a homogeneous linear isotropic elastic medium from antiplane elastic waves is studied. The transformation or change-of-variables method is used to determine the material properties of the cloak and the homogenization theory of composites is used to construct a multilayered cloak consisting of many bi-material cells. The large system of algebraic equations associated with this problem is solved by using the concept of multiple scattering with wave expansion coefficient matrices. Numerical results for cloaking of an elastic inclusion and a rigid inclusion are compared with the case of a cavity. It is found that while the cloaking patterns for the three cases are similar, the major difference is that standing waves are generated in the elastic inclusion and the multilayered cloak cannot prevent the motion inside the elastic inclusion, even though the cloak seems nearly perfect. Waves can penetrate into and cause vibrations inside the elastic inclusion, where the amplitude of standing waves depend on the material properties of the inclusion but are very much reduced when compared to the case when there is no cloak. For a prescribed mass density, the displacements inside the elastic cylinder decrease as the shear modulus increases. Moreover, the cloaking of the elastic inclusion over a range of wavenumbers is also investigated. There is significant low frequency scattering even if the cloak consists of a large number of layers. When the wavenumber increases, the multilayered cloak is not effective if the cloak consists of an insufficient number of layers. Resonance effects that occur in cloaking of elastic inclusions are also discussed.  相似文献   

2.
The paper addresses an important issue of cloaking transformations for fourth-order partial differential equations representing flexural waves in thin elastic plates. It is shown that, in contrast with the Helmholtz equation, the general form of the partial differential equation is not invariant with respect to the cloaking transformation. The significant result of this paper is the analysis of the transformed equation and its interpretation in the framework of the linear theory of pre-stressed plates. The paper provides a formal framework for transformation elastodynamics as applied to elastic plates. Furthermore, an algorithm is proposed for designing a broadband square cloak for flexural waves, which employs a regularised push-out transformation. Illustrative numerical examples show high accuracy and efficiency of the proposed cloaking algorithm. In particular, a physical configuration involving a perturbation of an interference pattern generated by two coherent sources is presented. It is demonstrated that the perturbation produced by a cloaked defect is negligibly small even for such a delicate interference pattern.  相似文献   

3.
Acoustic cloaking is an important application of acoustic metamaterials. This article proposes a novel design scheme for acoustic cloaking based on the region partitioning and multi-origin coordinate transformation. The cloaked region is partitioned into multiple narrow strips. For each strip, a local coordinate system is established with the local origin located at the strip center, and a coordinate transformation in the local coordinate system is conducted to squeeze the material along the strip length direction to form the cloaked region. To facilitate the implementation of the acoustic cloak, the multilayer effective medium is used to approximate the non-uniform anisotropic material parameters. The effectiveness of the proposed coordinate transformation method is verified by comparing the results from our method with those in the literature. Firstly, the results of a circular acoustic cloak in the literature are reproduced by using our finite element (FE) simulations for validation. Then, a comparison is made between the traditional coordinate transformation scheme and our new scheme for simulating an elliptical acoustic cloak. The results indicate that the proposed multi-origin coordinate transformation method has a better cloaking effect on the incident wave along the ellipse minor axis direction than the traditional method. This means that for the same object, an appropriate transformation scheme can be selected for different incident wave directions to achieve the optimal control effect. The validated scheme is further used to design an arch-shaped cloak composed of an upper semicircular area and a lower rectangular area, by combining the traditional single-centered coordinate transformation method for the semicircular area and the proposed multi-origin method for the rectangular area. The results show that the designed cloak can effectively control the wave propagation with significantly reduced acoustic pressure level. This work provides a flexible acoustic cloak design method applicable for arbitrary shapes and different wave incident directions, enriching the theory of acoustic cloaking based on coordinate transformation.  相似文献   

4.
We consider the problem of how to cloak objects from antiplane elastic waves using two alternative techniques. The first is the use of a layered metamaterial in the spirit of the work of Torrent and Sanchez-Dehesa (2008) who considered acoustic cloaks, motivated by homogenization theories, whilst the second is the use of a hyperelastic cloak in the spirit of the work of Parnell et al. (2012). We extend the hyperelastic cloaking theory to the case of a Mooney–Rivlin material since this is often considered to be a more realistic constitutive model of rubber-like media than the neo-Hookean case studied by Parnell et al. (2012), certainly at the deformations required to produce a significant cloaking effect. Although not perfect, the Mooney–Rivlin material appears to be a reasonable hyperelastic cloak. This is clearly encouraging for applications. We quantify the effectiveness of the various cloaks considered by plotting the scattering cross section as a function of frequency, noting that this would be zero for a perfect cloak.  相似文献   

5.
We cloak a region from a known incident wave by surrounding the region with three or more devices that cancel out the field in the cloaked region without significantly radiating waves. Since very little waves reach scatterers within the cloaked region, the scattered field is small and the scatterers are for all practical purposes undetectable. The devices are multipolar point sources that can be determined from Green's formula and an addition theorem for Hankel functions. The cloaking devices are exterior to the cloaked region.  相似文献   

6.
A coordinate-transformation method can be used to design invisibility cloaks for many types of waves, including acoustic waves. The traditional method for designing a cloak depends on a transformation from a virtual space to a physical space. Previous acoustic cloaks that are mainly designed with linear-transformation-based acoustics have drawbacks that acoustic wave trajectories in the cloaks cannot be controlled and tuned. This work uses a nonlinear mapping from a ray trajectory perspective to construct acoustic cloaks with tunable non-singular material properties. Use of a ray trajectory equation is a straightforward and alternate way to study propagation characteristics of different types of waves, which allows more flexibility in controlling the waves. A broadband cylindrical cloak for acoustic waves in an inviscid fluid is realized with layered non-singular, homogeneous, and isotropic materials based on a nonlinear transformation. Some advantages and improvements of the invisibility nonlinear-transformation cloak over a traditional linear-transformation cloak are analyzed. The invisibility capability of the nonlinear-transformation cloak can be tuned by adjusting a design parameter that is shown to have influence on the acoustic wave energy flowing into the region inside the cloak. Numerical examples show that the nonlinear-transformation cloak is more effective for making a domain undetectable by acoustic waves in an inviscid fluid and shielding acoustic waves from outside the cloak than the linear-transformation cloak in a broad frequency range. The methodology developed here can be used to design nonlinear-transformation cloaks for other types of waves.  相似文献   

7.
The possibility of plane wave propagation in a micropolar fluid of infinite extent has been explored. The reflection and transmission of longitudinal elastic wave at a plane interface between a homogeneous micropolar fluid half-space and a micropolar solid half-space has also been investigated. It is found that there can exist four plane waves propagating with distinct phase speeds in an infinite micropolar fluid. All the four waves are found to be dispersive and attenuated. The reflection and transmission coefficients are found to be the functions of the angle of incidence, the elastic properties of the half-spaces and the frequency of the incident wave. The expressions of energy ratios have also been obtained in explicit form. Frequency equation for the Stoneley wave at micropolar solid/fluid interface has also been derived in the form of sixth-order determinantal expression, which is found in full agreement with the corresponding result of inviscid liquid/elastic solid interface. Numerical computations have been performed for a specific model. The dispersion curves and attenuation of the existed waves in micropolar fluid have been computed and depicted graphically. The variations of various amplitudes and energy ratios are also shown against the angle of incidence. Results of some earlier workers have been deduced from the present formulation.  相似文献   

8.
The problem of diffraction of waves due to plane harmonic SH-waves incident normally on a line crack situated in an infinite micropolar elastic medium has been considered. The solution of the problem is obtained for both low and high frequencies for small coupling parameter. The stress-intensity factors in micropolar elastic medium have been derived. The stress-intensity factor for such problem in an elastic medium can be deduced from results obtained in this paper. It is also found that the effect of micropolarity in the propagation of waves is more significant in high frequencies than low frequencies.  相似文献   

9.
Two-dimensional plane wave propagation in an orthotropic micropolar elastic solid is studied. There exist three types of coupled waves in xy-plane, whose velocities depend upon the angle of propagation and material parameters. A problem on reflection of these plane waves from a stress-free boundary is considered. The reflection coefficients of various reflected waves are computed numerically for a particular model of the solid. The effects of anisotropy upon the velocities and reflection coefficients are depicted graphically for different angles of propagation.  相似文献   

10.
The present investigation is concerned with the wave propagation at an interface of a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space. Reflection and transmission phenomena of plane waves are investigated, which impinge obliquely at the plane interface between a micropolar generalized thermoelastic solid half space and a heat conducting micropolar fluid half space.The incident wave is assumed to be striking at the interface after propagating through the micropolar generalized thermoelastic solid. The amplitude ratios of various reflected and transmitted waves are obtained in a closed form. It is found that they are a function of the angle of incidence and frequency and are affected by the elastic properties of the media. Micropolarity and thermal relaxation effects are shown on the amplitude ratios for a specific model. The results of some earlier literatures are also deduced from the present investigation.  相似文献   

11.
This study is concerned with the reflection and transmission of plane waves at an imperfectly bonded interface between two orthotropic micropolar elastic half-spaces with different elastic and micropolar properties. There exist three types of coupled waves in xy-plane. The reflection and transmission coefficients of quasi-longitudinal (QLD) wave, quasi-coupled transverse microrotational (QCTM) wave and quasi-coupled transverse displacement (QCTD) wave have been derived for different incidence waves and deduced for normal force stiffness, transverse force stiffness, transverse couple stiffness and perfect bonding. The numerical values of modules of the reflection and transmission coefficients are presented graphically with the angle of incidence for orthotropic micropolar medium (MOS) and isotropic micrpolar medium (MIS). Some particular cases of interest have been deduced from the present investigation.  相似文献   

12.
Transformational acoustics offers the theoretical possibility of cloaking obstacles within fluids, provided metamaterials having continuously varying bulk moduli and densities can be found or constructed. Realistically, materials with the proper, continuously varying anisotropies do not presently exist. Discretely layered cloaks having constant material parameters within each layer are a viable alternative, but due to their discrete nature, may become ineffective outside of narrow frequency ranges. Because of such limitations, there is interest in finding discretely layered systems that can be effective in as wide as possible bandwidth without the need for unrealizable material properties within each layer. The present work introduces a novel methodology for finding optimal material parameters for use in such layered cloaks. In principle, the technique could be applied to any acoustic or electromagnetic scattering problem, but for purposes of demonstration, this paper considers a fluid-loaded acoustically hard sphere with a cloak that comprised layered pentamodes, whose material properties are constrained to lie within reasonable ranges relative to the density and bulk modulus of water.  相似文献   

13.
Steering waves in elastic solids is more demanding than steering waves in electromagnetism or acoustics. As a result, designing material distributions which are the counterpart of optical invisibility cloaks in elasticity poses a major challenge. Waves of all polarizations should be guided around an obstacle to emerge on the downstream side as though no obstacle were there. Recently, we have introduced the direct-lattice-transformation approach. This simple and explicit construction procedure led to extremely good cloaking results in the static case. Here, we transfer this approach to the dynamic case, i.e., to elastic waves or phonons. We demonstrate broadband reduction of scattering, with best suppressions exceeding a factor of five when using cubic coordinate transformations instead of linear ones. To reliably and quantitatively test these cloaks efficiency, we use an effective-medium approach.  相似文献   

14.
This work is concerned with the wave propagation and their reflection and transmission from a plane interface between two different electro-microelastic solid half-spaces in perfect contact. It is found that there exist five basic waves in an infinite electro-microelastic solid, namely an independent longitudinal micro-rotational wave, two sets of coupled longitudinal waves influenced by the electric effect, and two sets of coupled transverse waves. The existence of the two sets of coupled longitudinal waves is new. In the absence of microstretch and electric effects, these two coupled longitudinal waves reduce to a longitudinal displacement wave of micropolar elasticity. Amplitude and energy ratios of various reflected and transmitted waves are presented when (i) a set of coupled longitudinal wave is made incident and (ii) a set of coupled transverse wave is made incident. Numerical computations have been performed for a particular model and the variations of amplitude and energy ratios are obtained against the angle of incidence. The results obtained are depicted graphically. It has been verified that the sum of energy ratios is equal to unity at the interface and the amplitude ratios of reflected and transmitted waves depend upon the angle of incidence, frequency and elastic properties of the media. Results of some earlier workers have also been reduced from the present formulation.  相似文献   

15.
The Cosserat model generalises an elastic material taking into account the possible microstructure of the elements of the material continuum. In particular, within the Cosserat model the structured material point is rigid and can only experience microrotations, which is also known as micropolar elasticity. We present the geometrically nonlinear theory taking into account all possible interaction terms between the elastic and microelastic structures. This is achieved by considering the irreducible pieces of the deformation gradient and of the dislocation curvature tensor. In addition we also consider the so-called Cosserat coupling term. In this setting we seek soliton type solutions assuming small elastic displacements, however, we allow the material points to experience full rotations which are not assumed to be small. By choosing a particular ansatz we are able to reduce the system of equations to a sine–Gordon type equation which is known to have soliton solutions.  相似文献   

16.
The problem of reflection and transmission of plane periodic waves incident on the interface between the loosely bonded elastic solid and micropolar porous cubic crystal half spaces is investigated. This is done by assuming that the interface behaves like a dislocation, which preserves the continuity of traction while allowing a finite amount of slip. Amplitude ratios of various reflected and transmitted waves have been depicted graphically. Some special cases of interest have been deduced from the present investigation.  相似文献   

17.
18.
A facile method to realize perfectly matched layers for elastic waves   总被引:1,自引:0,他引:1  
In perfectly matched layer (PML) technique, an artificial layer is introduced in the simulation of wave propagation as a boundary condition which absorbs all incident waves without any reflection. Such a layer is generally thought to be unrealizable due to its complicated material formulation. In this paper, on the basis of transformation elastodynamics and complex coordinate transformation, a novel method is proposed to design PMLs for elastic waves. By applying the conformal transformation technique, the proposed PML is formulated in terms of conventional constitutive parameters and then can be easily realized by functionally graded viscoelastic materials. We perform numerical simulations to validate the material realization and performance of this PML.  相似文献   

19.
The present study is concerned with the wave propagation in an electro-microelastic solid. The reflection phenomenon of plane elastic waves from a stress free plane boundary of an electro-microelastic solid half-space is studied. The condition and the range of frequency for the existence of elastic waves in an infinite electro-microelastic body are investigated. The constitutive relations and the field equations for an electro-microelastic solid are stemmed from the Eringen’s theory of microstretch elasticity with electromagnetic interactions. Amplitude ratios and energy ratios of various reflected waves are presented when an elastic wave is made incident obliquely at the stress free plane boundary of an electro-microelastic solid half-space. It has been verified that there is no dissipation of energy at the boundary surface during reflection. Numerical computations are performed for a specific model to calculate the phase speeds, amplitude ratios and energy ratios, and the results obtained are depicted graphically. The effect of elastic parameter corresponding to micro-stretch is noticed on reflection coefficients, in particular. Results of Parfitt and Eringen [Parfitt, V.R., Eringen, A.C., 1969. Reflection of plane waves from a flat boundary of a micropolar elastic half-space. J. Acoust. Soc. Am. 45, 1258–1272] have also been reduced as a special case from the present formulation.  相似文献   

20.
Transformation hydrodynamics and the corresponding metamaterials have been proposed as a means to exclude the drag force acting on an object. Here, we report a strategy to deploy the hydrodynamic cloaks in a more practical manner by assembling different-shaped cloaking parts. Our strategy is to first model a square-shaped cloak and a carpet cloak and then combine them to conceal a more complex-shaped space in the three-dimensional hydrodynamic flow. With the derivation of transformation hydrodynamics, the coordinate transformations for each hydrodynamic cloaking are demonstrated with the calculated viscosity tensors. The pressure and velocity fields of the square, triangular (carpet), and exemplary three-dimensional house-shaped cloaks are numerically simulated, thus showing a cloaking effect and reduced drag. This study suggests an efficient way of cloaking complex architectures from fluid-dynamic forces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号