首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The general theory of two-dimensional evolution equations describing transient wave propagation in non-linear continuous media is presented. The ray method is used and the two-dimensional evolution equations for plane and cylindrical wave-beams are obtained. The transient wave solutions are discussed briefly. A transformation of variables is proposed that permits the transformation of the two-dimensional evolution equation into a one-dimensional evolution equation with coordinate-dependent coefficients. A breakdown time analysis is carried out for this case. The dispersion relations for plane and cylindrical wave-beams are presented. The non-linear dispersion relation is obtained by making use of a series representation.  相似文献   

2.
A Mindlin continuum model that incorporates both a dependence upon the microstructure and inelastic (nonlinear) behavior is used to study dispersive effects in elasto-plastic microstructured materials. A one-dimensional equation of motion of such material systems is derived based on a combination of the Mindlin microcontinuum model and a hardening model both at the macroscopic and microscopic level. The dispersion relation of propagating waves is established and compared to the classical linear elastic and gradient-dependent solutions. It is shown that the observed wave dispersion is the result of introducing microstructural effects and material inelasticity. The introduction of an internal characteristic length scale regularizes the ill-posedness of the set of partial differential equations governing the wave propagation. The phase speed does not necessarily become imaginary at the onset of plastic softening, as it is the case in classical continuum models and the dispersive character of such models constrains strain softening regions to localize.  相似文献   

3.
In this study, we consider a one-dimensional three-phase model describing wet pressing of paper. Part I is devoted to the simplified case in which air is assumed incompressible. In Part II we drop this assumption. The model is formulated in terms of water saturation and void ratio and it uses a material coordinate to describe spatial dependence. It also involves cross or matching conditions between the wet paper and the felt. In mathematical terms, we end up with a coupled system of equations: a nonlinear diffusion equation and a first order hyperbolic equation. We present some analytical observations to explain the essential behaviour of the model and we carry out numerical experiments using an upwind and a front tracking method.  相似文献   

4.
A new nonlinear evolution equation is derived for surface solitary waves propagating on a liquid-air interface where the wave motion is induced by a harmonic forcing. Instead of the traditional approach involving a base state of the long wave limit, a base state of harmonic waves is assumed for the perturbation analysis. This approach is considered to be more appropriate for channels of length just a few multiples of the depth. The dispersion relation found approaches the classical long wave limit. The weakly nonlinear dispersive waves satisfy a KdV-like nonlinear evolution equation with steeper nonlinearity.  相似文献   

5.
A weakly nonlinear stability analysis of wave propagation in two superposed dielectric fluids streaming through porous media in the presence of vertical electric field producing surface charges is investigated in three dimensions. The method of multiple scales is used to obtain a dispersion relation for the linear problem and a nonlinear Klein–Gordon equation with complex coefficients describing the behavior of the perturbed system at the critical point of the neutral curve. In the linear case, we found that the system is always unstable for all physical quantities (including the dimension l), even in the presence of electric fields and porous medium, in the nonlinear case, novel stability conditions are obtained, and the effects of various parameters on the stability of the system are discussed numerically in detail.  相似文献   

6.
We study the nonlinear stress-strain constitutive relation proposed earlier for describing one-dimensional isothermal rheological processes in the case of monotonous variation of the strain (in particular, viscoplasticity, creep, relaxation, plasticity, and superplasticity). This relation contains integral time operators of the strain and strain rate, which are the norms in the Lebesgue and Sobolev spaces equipped with special weight factors, one material function, and nine material parameters determined by the results of tests of the material for relaxation, creep, long-term strength, and constant-rate strain.We analytically inverse the constitutive relation and study the properties of the inverse operator. We derive the equation of creep curves corresponding to an arbitrary law of loading at the stage of passing from the zero stress to a given constant level. We study their dependence on the material parameters and the loading stage characteristics and find restrictions on the material parameters which ensure that the asymptotic behavior of the creep curves for large times is independent of the length of the loading stage and the specific law of stress variation during this stage, i.e., we find the conditions of the model memory decay in creep. Thus we have proved that the constitutive relation proposed above can adequately model both creep and the effect of the material memory decay.  相似文献   

7.
姚磊  李永池 《爆炸与冲击》2007,27(4):345-351
对应力波在变截面体中的传播特性进行了理论研究和数值分析。以杆中一维纵波波动理论和谐波分析法为基础,研究截面变化所导致的应力波的波形弥散和波幅变化。推导了与截面变化相关的应力波演化因子,并对由于截面变化所造成的几何弥散等二维效应进行了分析,同时计算了变截面体的几何特征参数和截面变化等因素影响应力波演化规律的特点。  相似文献   

8.
研究了非圆截面杆中非线性扭转波的传播特性.由于非圆截面杆的扭转运动会伴随有横截面的翘曲,这种翘曲运动将引起扭转波的弥散.如果同时考虑有限扭转变形和翘曲弥散的共同作用,将会得到非线性扭转波的方程.在相平面上,对非线性扭转波动方程进行定性分析,结果表明,在一定条件下方程存在同宿轨道或异宿轨道,分别相应于方程的孤波解或冲击波解.本文利用Jacobi椭圆函数展开法,对该非线性方程进行求解,得到了非线性波动方程的三类准确周期解及相应的孤波解和冲击波解,讨论了这些解存在的必要条件.这些条件与定性分析的结果相一致.  相似文献   

9.
The stability of the phase interface in geothermal systems is considered in the isothermal approximation with allowance for capillary effects. The dispersion relation is obtained and the domains of stability and instability of steady-state vertical flows are found. Possible types of transition to instability, namely, transitions with the most unstable mode corresponding to zero and infinite wavenumbers or to all wavenumbers simultaneously, are described. In the first case the nonlinear Kolmogorov-Petrovskii-Piskunov equation describing the evolution of a narrow strip of weakly unstable modes on the stability threshold is derived. The effect of the parameters of the system on its stability is investigated.  相似文献   

10.
The dispersion of nonlinear waves in a relaxing medium is analysed by making use of the evolution equations for longitudinal waves. The dispersion relations are obtained and the behaviour of the waves compared to those that arise when they are governed by the well-known Korteweg-de Vries (KdV) and Benjamin-Bona-Mahony (BBM) equations that describe unidirectional motion and also by the time regularized long wave (TRLW) equation that describes bi-directional motion. The nonlinear steady wave solutions are obtained. The general mathematical model used throughout this paper is obtained by the theory of nonlinear elasticity with weak relaxation effects (standard viscoelasticity). A further generalization using a four-element model is also discussed briefly.  相似文献   

11.
Thin, one-dimensional shock pulses were generated in a nonlinear viscoelastic material (polymethyl methacrylate) by a new experimental technique. The observed pulse attenuation was compared with an approximate theory based on the viscoelastic shock amplitude equation. The central assumption of this approximate theory is that the unloading wave propagates as a simple wave. Given an initial pulse shape it is shown that the attenuation and the pulse shape at any later time are accurately approximated. The calculated attenuation in polymethyl methacrylate agreed well with the experimental results.  相似文献   

12.
We consider the problem of two- and three-dimensional nonlinear buoyant flows in horizontal mushy layers during the solidification of binary alloys. We study the nonlinear evolution of such flow based on a recently developed realistic model for the mushy layer with permeable interface. The evolution approach is based on a Landau type equation for the amplitude of the secondary nonlinear solution, which can be in the form of rolls, squares, rectangles or hexagons. Using both analytical and computational methods, we calculate the solutions to the evolution equation near the onset of motion for both subcritical and supercritical regimes and determine the stable solutions. We find, in particular, that for several investigated cases with different parameter regimes, secondary solution in the form of subcritical down-hexagons or supercritical up-hexagons can be stable. However, the preferred solution for smallest values of the Rayleigh number and the amplitude of motion is in the form of subcritical down-hexagons. This result appears to agree with the experimental observation on the form of the convective flow near the onset of motion.  相似文献   

13.
For the nonlinear kinetic equation describing the one-dimensional motion of a quasineutral collisionless plasma, perturbation velocities are determined and conditions of generalized hyperbolicity are formulated. Exact (in particular, periodical) solutions of the model are constructed and interpreted physically for the class of traveling waves. Differential conservation laws approximating the basic integrodifferential equation are proposed. These laws are used to perform numerical calculations of wave propagation, which show the possibility of turnover of the kinetic distribution function.  相似文献   

14.
This paper explores optimal topologies yielding large band gap shifts in one- and two-dimensional nonlinear periodic materials. The presence of a nonlinearity in a periodic material system results in amplitude-dependent dispersion behavior, leading to novel wave-based devices such as tunable filters, resonators, and waveguides. The performance of these devices over a broad frequency range requires large, tunable band gaps, motivating the present study. Consideration of a one-dimensional bilayer system composed of alternating linear and nonlinear layers shows that optimal designs consist of thin, compliant nonlinear layers. This is at first surprising considering the source of the shift originates from only the nonlinear layer; however, thin layers lead to localized stresses that activate the nonlinear character of the system. This trend persists in two-dimensional materials where optimization studies are performed on plane-stress models discretized using bilinear Lagrange elements. A fast algorithm is introduced for computing the dispersion shifts, enabling efficient parametric analyses of two-dimensional inclusion systems. Analogous to the one-dimensional system, it is shown that thin ligaments of nonlinear material lead to large dispersion shifts and group velocity variations. Optimal topologies of the two-dimensional system are also explored using genetic algorithms aimed at producing large increases in complete band gap width and shift, or group velocity variation, without presupposing the topology. The optimal topologies that result resemble the two-dimensional inclusion systems, but with small corner features that tend to enhance the production of dispersion shift further. Finally, the study concludes with a discussion on Bloch wave modes and their important role in the production of amplitude-dependent dispersion behavior. The results of the study provide insight and guidance on selecting topologies and materials which can yield large amplitude-dependent band gap shifts and group velocity variations, thus enabling sensitive nonlinear devices.  相似文献   

15.
The propagation of acoustic waves in two-fraction liquid mixtures containing vapor-gas bubbles of different dimensions and composition with phase transitions in each fraction is investigated. The system of differential equations of the mixture motion is presented and the dispersion equation is derived. The evolution of weak pulsed pressure disturbances in the mixture is numerically investigated. The effect of phase transitions in each fraction of the disperse phase on the evolution of a small-amplitude pressure pulse is shown.  相似文献   

16.
This paper presents a mathematical modelling and numerical calculations of heat conduction problems where laser generated heat is assumed as a surface heat source. Also the effect of a laser time structure on a hardened layer depth is examined. Temperature profiles for different laser pulse shapes are determined from the solution of a linear one-dimensional heat conduction equation for semi-infinite medium and discussed in terms of the parameters evolution such as dimensionless: temperature, heat flux, hardening depth, laser impulse duration and increasing time of triangular pulse shape.  相似文献   

17.
We have derived an equation governing the evolution of a random field of nonlinear, deep-water, gravity waves by extending the approach used by Zakharov [1] for describing the deterministic system. This equation accounts for both the effects of inhomogeneity and the energy transfer mechanism associated with the homogeneous spectrum. The narrow-band limit of this equation is used to study the stability of a random wavetrain to two-dimensional deterministic perturbations. The effect of randomness is found to reduce the growth rate and the extent of the instability.  相似文献   

18.
本文根据Green-Rivlin提出的Frechet级数,提出了一个兼具长时粘流效应及短时粘弹效应的一维非线性本构方程,并对一种沥青混合料采用蠕变试验方式拟合了本构方程的参数向量。拟合结果表明:这一本构方程形式简洁,物理意义清晰,易于拟合,并对不同应力历史下的应变响应具有广泛的适用性。  相似文献   

19.
This paper describes the linearized and nonlinear dynamic response of a tension leg platform (TLP) to random waves and current forces. The forcing term of the equation of motion is inherently nonlinear due to the nonlinear drag force. Two analysis procedures are used: nonlinear time domain analysis and linear frequency domain analysis. For the nonlinear analysis, the random wave particle velocities and accelerations are simulated for a given wave spectrum. The nonlinear equation of motion is then integrated directly to obtain the system response statistics. For the linear frequency domain analysis, the nonlinear drag force is linearized through an introduction of linearization coefficients. The main objective of this paper is to investigate the effect of the structural damping and wave parameters on both nonlinear and linear dynamic response of the TLP by parametric studies. The results of stochastic nonlinear and linear dynamic response of the TLP, with and without the presence of current, are presented and compared.  相似文献   

20.
随机结构非线性动力响应的概率密度演化分析   总被引:26,自引:5,他引:26  
李杰  陈建兵 《力学学报》2003,35(6):716-722
提出了随机结构非线性动力响应分析的概率密度演化方法.根据结构动力响应的随机状态方程,利用概率守恒原理,建立了随机结构非线性动力响应的概率密度演化方程.结合Newmark-Beta时程积分方法与Lax-Wendroff差分格式,提出了概率密度演化方程的数值分析方法.通过与Monte Carlo分析方法对比,表明所给出的概率密度演化方法具有良好的计算精度和较小的计算工作量.研究表明:随机结构非线性动力响应概率密度具有典型的演化特征,随着时间增长,概率密度曲线分布趋于复杂.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号