首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
《Physics letters. A》2020,384(27):126690
The present study demonstrates the fabrication of an antiferroelectric 0.92NaNbO3-0.08SrZrO3 film deposited on a SrRuO3 coated (001)SrTiO3 single crystal substrate by pulsed laser deposition. In the 0.92NaNbO3-0.08SrZrO3 film, the domain with its c-axis aligned with the out-of-plane direction contributed to the stabilization of an antiferroelectric phase under the high electric field. The film had an energy storage density of 2.9 J cm−3 and storage efficiency of 67% at room temperature, which kept at 2.5 J cm−3 and 50% at high temperature of 150 °C.  相似文献   

2.
We investigate selective patterning of ultra-thin 20 nm Indium Tin Oxide (ITO) thin films on glass substrates, using 343, 515, and 1030 nm femtosecond (fs), and 1030 nm picoseconds (ps) laser pulses. An ablative removal mechanism is observed for all wavelengths at both femtosecond and picoseconds time-scales. The absorbed threshold fluence values were determined to be 12.5 mJ cm2 at 343 nm, 9.68 mJ cm2 at 515 nm, and 7.50 mJ cm2 at 1030 nm for femtosecond and 9.14 mJ cm2 at 1030 nm for picosecond laser exposure. Surface analysis of ablated craters using atomic force microscopy confirms that the selective removal of the film from the glass substrate is dependent on the applied fluence. Film removal is shown to be primarily through ultrafast lattice deformation generated by an electron blast force. The laser absorption and heating process was simulated using a two temperature model (TTM). The predicted surface temperatures confirm that film removal below 1 J cm−2 to be predominately by a non-thermal mechanism.  相似文献   

3.
Ultrafast pulsed laser ablation has been investigated as a technique to machine CdWO4 single crystal scintillator and segment it into small blocks with the aim of fabricating a 2D high energy X-ray imaging array. Cadmium tungstate (CdWO4) is a brittle transparent scintillator used for the detection of high energy X-rays and γ-rays. A 6 W Yb:KGW Pharos-SP pulsed laser of wavelength 1028 nm was used with a tuneable pulse duration of 10 ps to 190 fs, repetition rate of up to 600 kHz and pulse energies of up to 1 mJ was employed. The effect of varying the pulse duration, pulse energy, pulse overlap and scan pattern on the laser induced damage to the crystals was investigated. A pulse duration of ≥500 fs was found to induce substantial cracking in the material. The laser induced damage was minimised using the following operating parameters: a pulse duration of 190 fs, fluence of 15.3 J cm−2 and employing a serpentine scan pattern with a normalised pulse overlap of 0.8. The surface of the ablated surfaces was studied using scanning electron microscopy, energy dispersive X-ray spectroscopy, atomic force microscopy and X-ray photoelectron spectroscopy. Ablation products were found to contain cadmium tungstate together with different cadmium and tungsten oxides. These laser ablation products could be removed using an ammonium hydroxide treatment.  相似文献   

4.
Fast, accurate cutting of technical ceramics is a significant technological challenge because of these materials' typical high mechanical strength and thermal resistance. Femtosecond pulsed lasers offer significant promise for meeting this challenge. Femtosecond pulses can machine nearly any material with small kerf and little to no collateral damage to the surrounding material. The main drawback to femtosecond laser machining of ceramics is slow processing speed. In this work we report on the improvement of femtosecond laser cutting of sintered alumina substrates through optimisation of laser processing parameters. The femtosecond laser ablation thresholds for sintered alumina were measured using the diagonal scan method. Incubation effects were found to fit a defect accumulation model, with Fth,1=6.0 J/cm2 (±0.3) and Fth,=2.5 J/cm2 (±0.2). The focal length and depth, laser power, number of passes, and material translation speed were optimised for ablation speed and high quality. Optimal conditions of 500 mW power, 100 mm focal length, 2000 µm/s material translation speed, with 14 passes, produced complete cutting of the alumina substrate at an overall processing speed of 143 µm/s – more than 4 times faster than the maximum reported overall processing speed previously achieved by Wang et al. [1]. This process significantly increases processing speeds of alumina substrates, thereby reducing costs, making femtosecond laser machining a more viable option for industrial users.  相似文献   

5.
We demonstrate the first Cr4+:YAG passively Q-switched c-cut Nd:YVO4 self-Raman laser at 1168.6 nm based on the Stokes shift of 816 cm−1. At the pump power of 4.7 W, the maximum output power of the Stokes line at 1168.6 nm is 270.5 mW, corresponding to an optical conversion efficiency of 5.8%. The pulse width, pulse repetition rate, pulse energy and peak power are 8.8 ns, 35.8 kHz, 7.6 μJ and 0.86 kW, respectively. At the pump of 5.0 W, the Stokes line at 1097.2 nm based on Raman shift of 259 cm−1 also appears.  相似文献   

6.
We reported on the ablation depth control with a resolution of 40 nm on indium tin oxide (ITO) thin film using a square beam shaped femtosecond (190 fs) laser (λp=1030 nm). A slit is used to make the square, flat top beam shaped from the Gaussian spatial profile of the femtosecond laser. An ablation depth of 40 nm was obtained using the single pulse irradiation at a peak intensity of 2.8 TW/cm2. The morphologies of the ablated area were characterized using an optical microscope, atomic force microscope (AFM), and energy dispersive X-ray spectroscopy (EDS). Ablations with square and rectangular types with various sizes were demonstrated on ITO thin film using slits with varying xy axes. The stereo structure of the ablation with the depth resolution of approximately 40 nm was also fabricated successfully using the irradiation of single pulses with different shaped sizes of femtosecond laser.  相似文献   

7.
《Solid State Ionics》2006,177(19-25):1733-1736
Thin films of La1.61GeO5−δ, a new oxide ionic conductor, were fabricated on dense polycrystalline Al2O3 substrates by a pulsed laser deposition (PLD) method and the effect of the film thickness on the oxide ionic conductivity was investigated on the nanoscale. The deposition parameters were optimized to obtain La1.61GeO5−δ thin films with stoichiometric composition. Annealing was found necessary to get crystalline La1.61GeO5−δ thin films. It was also found that the annealed La1.61GeO5−δ film exhibited extraordinarily high oxide ionic conductivity. Due to the nano-size effects, the oxide ion conductivity of La1.61GeO5−δ thin films increased with the decreasing thickness as compared to that in bulk La1.61GeO5−δ. In particular, the improvement in conductivity of the film at low temperature was significant .The electrical conductivity of the La1.61GeO5−δ film with a thickness of 373 nm is as high as 0.05 S cm 1 (log(σ/S cm 1) =  1.3) at 573 K.  相似文献   

8.
We have reported SmBa2Cu3Oy (SmBCO) films on single crystalline substrates prepared by low-temperature growth (LTG) technique. The LTG-SmBCO films showed high critical current densities in magnetic fields compared with conventional SmBCO films prepared by pulsed laser deposition (PLD) method. In this study, to enhance critical current (Ic) in magnetic field, we fabricated thick LTG-SmBCO films on metal substrates with ion-beam assisted deposition (IBAD)-MgO buffer and estimated the Ic and Jc in magnetic fields.All the SmBCO films showed c-axis orientation and cube-on-cube in-plane texture. Tc of the LTG-SmBCO films were 93.1–93.4 K. Jc and Ic of a 0.5 μm-thick SmBCO film were 3.0 MA/cm2 and 150 A/cm-width at 77 K in self-field, respectively. Those of a 2.0 μm-thick film were 1.6 MA/cm2 and 284 A/cm-width respectively. Although Ic increased with the film thickness increasing up to 2 μm, the Ic tended to be saturated in 300 A/cm-width. From a cross sectional TEM image of the SmBCO film, we recognized a-axis oriented grains and 45° grains and Cu–O precipitates. Because these undesired grains form dead layers, Ic saturated above a certain thickness. We achieved that Ic in magnetic fields of the LTG-SmBCO films with a thickness of 2.0 μm were 88 A/cm-width at 1 T and 28 A/cm-width at 3 T.  相似文献   

9.
《Journal of Molecular Liquids》2006,123(2-3):105-109
It is shown that the conductivities of LiBF4, LiPF6, LiN(SO2CF3)2 (LiTFSI), NaPF6, KPF are abnormally high in two diamine solvents: ethylenediamine (EDA) and 1,3-diaminopropane (1,3 DAP). This is particularly evident for KPF6, κMAX(EDA) = 35 mS cm 1 and κMAX(1,3 DAP) = 17.4 mS cm 1. Compared to three other organic solvents having the same viscosity, η  1.6 cP, but higher relative permittivity, NMF ε = 186.9, NMP ε = 32, γ-Bu ε = 39.1, the maxima of conductibility of EDA and 1,2 DAP, which have a low relative permittivity, ε  13–11, are largely superior or equal to those of NMF, NMP, γ-Bu. For KPF6, κMAX(NMF) = 15.4mS cm 1, κMAX(NMP) = 7.8 mS cm 1 and κMAX(γ-BL) = 10.8 mS cm 1. We assume that this is due to a non-Stokesian conductivity mechanism.  相似文献   

10.
The YBCO films with BaSnO3 (BSO) particles were prepared on LAO (0 0 1) substrates by metal organic deposition using trifluoroacetates (TFA-MOD) via introducing SnCl4 powders into the YBCO precursor solution. It was found that with the increase of the SnCl4 contents, the slower decomposition and higher temperature for nucleation during the reaction were requested compared to that of pure YBCO film. The YBCO films with different contents of Sn with dense surface and well c-alignment were obtained under optimized heat treatment, and the BaSnO3 phases were detected by XRD analysis. Litter effect of BSO particles on the Tc and Jc values of YBCO films was found. All YBCO films with BSO particles had Tc values over 90 K and Jc values over 1 MA/cm2. A significant enhancement of Jc was observed for YBCO films with BSO particles compared to that of pure YBCO film by the field dependence of Jc values. The best property was obtained for YBCO film with 6 mol.% Sn at 77 K under magnetic field. The results showed that the Jc value of YBCO film with 6 mol.% Sn was enhanced by a factor of 2 in 2 T, and over a factor of 10 beyond 4 T compared to that of pure YBCO film.  相似文献   

11.
This paper deals with the current transport mechanism of solid state photoelectrochemical cells of ITO/TiO2/PVC–LiClO4/graphite as well as the physical properties of a component of a device affecting its performance. The principle of operation and a schematic energy level diagram for the materials used in the photoelectrochemical cells are presented. The device makes use of ITO films, TiO2 films, PVC–LiClO4 and graphite films as photoanode, photovoltaic material, solid electrolyte and counter electrode, respectively. The device shows rectification. The Jsc and Voc obtained at 100 mW cm−2 were 0.95 μAcm−2 and 180 mV, respectively.  相似文献   

12.
《Solid State Ionics》2006,177(19-25):1747-1752
Oxygen tracer diffusion coefficient (D) and surface exchange coefficient (k) have been measured for (La0.75Sr0.25)0.95Cr0.5Mn0.5O3−δ using isotopic exchange and depth profiling by secondary ion mass spectrometry technique as a function of temperature (700–1000 °C) in dry oxygen and in a water vapour-forming gas mixture. The typical values of D under oxidising and reducing conditions at ∼ 1000 °C are 4 × 10 10 cm2 s 1 and 3 × 10 8 cm2 s 1 respectively, whereas the values of k under oxidising and reducing conditions at ∼ 1000 °C are 5 × 10 8 cm s 1 and 4 × 10 8 cm s 1 respectively. The apparent activation energies for D in oxidising and reducing conditions are 0.8 eV and 1.9 eV respectively.  相似文献   

13.
The dependence of structural and electrical properties of SnO2 films, prepared using spray pyrolysis technique, on the concentration of fluorine is reported. X-ray diffraction, FTIR and scanning electron microscope (SEM) studies have been performed on SnO2:F (FTO) films coated on glass substrates. Measured values of Hall coefficient and resistivity are reported. The 7.5 m% of F doped film had a resistivity of 15 × 10−4 Ω cm, carrier density of 18.7 × 1019 cm−3 and mobility of 21.86 cm2 V−1 S−1. The NiO film was coated on an FTO substrate and its electrochromic (EC) behavior was studied and the results are reported and discussed in this paper.  相似文献   

14.
The fabrication method and the pyroelectric response of a single element infrared sensor based lead zirconate titanate (PZT) particles and polyvinylidene fluoride P(VDF-TrFE) copolymer composite thick film is reported in this paper. A special thermal insulation structure, including polyimide (PI) thermal insulation layer and thermal insulation tanks, was used in this device. The thermal insulation tanks were fabricated by laser micro-etching technique. Voltage responsivity (RV), noise voltage (Vnoise), noise equivalent power (NEP), and detectivity (D*) of the PZT/P(VDF-TrFE) based infrared sensor are 1.2 × 103 V/W, 1.25 × 106 V Hz1/2, 1.1 × 10−9 W and 1.9 × 108 cm Hz1/2 W−1 at 137.3 Hz modulation frequency, respectively. The thermal time constant of the infrared sensor τT was about 15 ms. The results demonstrate that the composite infrared sensor show a high detectivity at high chopper frequency, which is an essential advantage in infrared detectors and some other devices.  相似文献   

15.
《Solid State Ionics》2006,177(1-2):95-104
The plastic crystal phase forming N-methyl-N-propylpyrrolidinium tetrafluoroborate organic salt (P13BF4) was combined with 2, 5 and 10 wt.% poly(vinyl pyrrolidone) (PVP). The ternary 2 wt.% PVP/2 wt.% LiBF4/P13BF4 was also investigated. Thermal analysis, conductivity, optical thermomicroscopy, and Nuclear Magnetic Resonance (11B, 19F, 1H, 7Li) were used to probe the fundamental transport processes. Both the onset of phase I and the final melting temperature were reduced with increasing additions of PVP. Conductivity in phase I was 2.6 × 10 4 S cm 1 5.2 × 10 4 S cm 1 1.1 × 10 4 S cm 1 and 3.9 × 10 5 S cm 1 for 0, 2, 5 and 10 wt.%PVP/P13BF4, respectively. Doping with 2 wt.% LiBF4 increased the conductivity by up to an order of magnitude in phase II. Further additions of 2 wt.% PVP slightly reduced the conductivity, although it remained higher than for pure P13BF4.  相似文献   

16.
We report the effects of BSO addition on the crystallinity, texture, and the field dependency of critical current density (Jc) of GdBCO coated conductors (CCs) prepared by pulsed laser deposition (PLD). Undoped and BSO-doped GdBCO films showed only c-axis oriented growth, and the incorporated BSO nanorods exhibited epitaxial relationship with the GdBCO matrix. In comparison with undoped film, BSO-doped GdBCO film exhibited greatly enhanced Jc and higher pinning force densities in the entire field region of 0–5 T (H//c) at 77 and 65 K. The BSO-doped GdBCO film showed the maximum pinning force densities (Fp) of 6.5 GN/m3 (77 K, H//c) and 32.5 GN/m3 (65 K, H//c), ~2.8 times higher than those of the undoped sample. Cross-sectional TEM analyses exhibited nano-structured BSO nanorods roughly aligned along the c-axis of the GdBCO film, which are believed effective flux pinning centers responsible for strongly improved critical current densities in magnetic fields.  相似文献   

17.
D.Q. Yuan  M. Zhou  J.T. Xu 《Optik》2012,123(7):582-585
Several nanostructures were obtained after irradiation with femtosecond laser pulse (130 fs, 800 nm, 1 kHz pulse repetition frequency) on Au/Cr film stack. The influence of laser parameters such as fluence (0.5 J/cm2, 1.5 J/cm2, 3 J/cm2) and the number of pulse were investigated. With single pulse irradiation, the nanoline and nonoparticle were obtained for the pulse fluence of 0.5 J/cm2 and 3 J/cm2, respectively. The formation mechanism of those nanostructures was discussed. The results of this experiment demonstrate that different kinds of nanostructures could be formed by varying the laser parameters such as fluence and the number of pulse.  相似文献   

18.
A near-IR laser absorption spectrometer using a technique of wavelength modulation spectroscopy is used to measure stable carbon isotope ratios of ambient CO213C) via the absorption lines 12CO2 R(17) (2ν1 + ν12  ν12 + ν3) at 4978.205 cm−1 and 13CO2 P(16) (ν1 + 2ν2 + ν3) at 4978.023 cm−1. The isotope ratios are measured with a reproducibility of 0.02‰ (1σ) in a 130-s integration time over a 12-h period. The humidity effect on δ13C values has been evaluated in laboratory experiments. The δ13C values of CO2 in ambient air were measured continuously over 8 days and agreed well with those from isotope ratio mass spectrometry of canister samples. The spectrometer is thus capable of real-time, in situ measurements of stable carbon isotope ratios of CO2 under ambient conditions.  相似文献   

19.
Porous lead zirconate titanate (PbZr0.3Ti0.7O3, PZT30/70) thick films and detectors for pyroelectric applications have been fabricated on alumina substrates by screen-printing technology. Low temperature sintering of PZT thick films have been achieved at 850 °C by using Li2CO3 and Bi2O3 sintering aids. The microstructure of PZT thick film has been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The dielectric properties were measured using HP 4284 at 1 kHz under 25 °C. The permittivity and loss tangent of the thick films were 94 and 0.017, respectively. Curie temperature of PZT thick film was 425 °C as revealed by dielectric constant temperature measurement. The pyroelectric coefficient was determined to be 0.9 × 10−8 Ccm−2 K−1 by dynamic current measurement. Infrared detector sensitive element of dual capacitance was fabricated by laser directly write technology. Detectivity of the detectors were measured using mechanically chopped blackbody radiation. Detectivity ranging from 1.23 × 108 to 1.75 × 108 (cm Hz1/2 W−1) was derived at frequency range from 175.5 Hz to 1367 Hz, and D*’s −3 dB cut-off frequency bandwidth was 1.2 kHz. The results indicate that the infrared detectors based on porous thick films have great potential applications in fast and wide-band frequency response conditions.  相似文献   

20.
The equilibrated grain boundary groove shapes for solid carbon tetrabromide (CTB) in equilibrium with its melt were directly observed by using a horizontal temperature gradient stage. From the observed grain boundary groove shapes, Gibbs–Thomson coefficient (Γ) and solid–liquid interfacial energy (σSL) and grain boundary energy (σgb) of CTB have been determined to be (7.88 ± 0.8) × 10−8 K m, (6.91 ± 1.04) × 10−3 J m−2 and (13.43 ± 2.28) × 10−3 J m−2, respectively. The ratio of thermal conductivity of equilibrated liquid phase to solid phase for CTB has also been measured to be 0.90 at its melting temperature. The value of σSL for CTB obtained in present work was compared with the values of σSL determined in the previous works for same material and it was seen that the present result is in good agreement with previous works.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号