首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Prussian blue/ionic liquid-polyaniline/multiwall carbon nanotubes (PB/IL-PANI/MWNTs) composite film was fabricated by using cyclic voltammetry. The ion liquid acting as a lubricating agent, could enhance the electron delocalization degree and reduce the struc-tural defects of the polyaniline. The surface morphology of the composite film revealed that the PB nanoparticles have smaller size than that in pure PB film. Due to the introduction of ion liquid, the PB/IL-PANI/MWNTs composite film showed wonderful synergistic effect which can remarkably enhance sensitivity, expand linear range and broaden acidic adapt-ability for hydrogen peroxide detection. The composite film demonstrated good stability in neutral solution contrast to pure PB film, with a linear range from 2.5 μmol/L to 0.5 mmol/Land a high sensitivity of 736.8 μA·(mmol/L)-1·cm-2 for H2O2 detection. Based on the com-posite film, an amperometric glucose biosensor was then fabricated by immobilizing glucose oxidase. Under the optimal conditions, the biosensor also exhibits excellent response to glucose with the linear range from 12.5 μmol/L to 1.75 mmol/L and a high sensitivity of 94.79 μA (mmol/L)-1·cm-2 for H2O2. The detection limit was estimated 1.1 μmol/L. The resulting biosensor was applied to detect the blood sugar in human serum samples without any pretreatment, and the results were comparatively in agreement with the clinical assay.  相似文献   

2.
采用壳聚糖-谷胱甘肽复合膜固定葡萄糖氧化酶构建电流型葡萄糖生物传感器。通过循环伏安法对酶膜状态进行表征,实验结果表明,壳聚糖-谷胱甘肽复合膜可以辅助电子传递,提高电极的电流响应。选用正交表L9(34)设计实验方案,分析最佳实验条件。在优化条件下,该传感器对葡萄糖溶液浓度有良好的线性关系,线性范围为1~18 mmol/L,检出限为1.3 mmol/L。实验表明,此传感器具有响应快、稳定性及选择性良好的特点。适用于临床尿样中葡萄糖的测定。  相似文献   

3.
基于Nafion/碳纳米粒子修饰的葡萄糖传感器   总被引:1,自引:0,他引:1  
采用滴涂法制备了Nafion/碳纳米粒子复合物修饰玻碳电极,该电极对H2O2具有良好的电催化氧化性能。还利用滴涂法制备了Nafion/碳纳米粒子复合物包裹的葡萄糖酶电化学生物传感器,该生物传感器对葡萄糖有着良好的电催化作用。应用该传感器对葡萄糖进行了检测,检测线性范围为2.0×10-6~6.0×10-3mol/L,检出限为1.6×10-6mol/L(S/N=3),实验结果表明该传感器具有良好的稳定性、重现性和抗干扰能力。对小鼠血清样品中的葡萄糖进行检测,结果令人满意。  相似文献   

4.
《Analytical letters》2012,45(6):1074-1082
Abstract

Mercury film electrodes consist of a thin film of mercury deposited on an electrode surface (typically glassy carbon) by reduction of a mercury (II) salt in solution. The surface area/volume ratio is larger for the mercury film electrode, and this electrode is more stable than mercury drop electrode, which allows a faster stirring rate to be used in the deposition step. An enzyme electrode is described, based on glucose oxidase immobilized by gelatin and glutaraldehyde and held over a glassy carbon electrode coated with a thin mercury film. This biosensor responds fast and linearly to glucose in a wide concentration range, which is significant because monitoring of glucose levels is a critical component of diabetes care. Certain optimization and characterization studies were carried out. Average value, standard deviation (SD), and variation coefficient (CV) were calculated with the help of the repeatability studies. Finally, glucose content of human blood samples was monitored with the help of the biosensor presented.  相似文献   

5.
《Electroanalysis》2004,16(21):1806-1813
A highly sensitive amperometric glucose biosensor based on immobilizing glucose oxidase in electropolymerized poly(o‐phenylenediamine) film on glassy carbon electrode coated sequentially with copper and palladium layers has been developed. The steady‐state amperometric response to glucose was determined by means of the oxidation of hydrogen peroxide generated by the enzymatic reaction at a potential of either +0.70 or +0.40 V (vs. Ag|AgCl reference). The deposited copper/palladium layer showed great enhancement in the performance of the enzyme electrode, possibly due to its better electrocatalytic activity for hydrogen peroxide oxidation and large surface area. Effects of the relative loading of palladium, enzyme and polymer on the electrode performance were examined in detail. Sensitivity and detection limit for glucose determinations at +0.70 V were about 7.3 μA/mM and 0.1 μM, respectively. A wide linear range up to 6.0 mM glucose could be achieved. Electrode performance was superior to similar works reported in the literature. The response time was less than 2 s and its lifetime was longer than three months. The permeable polyphenylenediamine film also offered good anti‐interference ability to ascorbic acid, uric acid and acetaminophen, especially when a detection potential of +0.40 V was employed.  相似文献   

6.
《Electroanalysis》2003,15(7):608-612
A new type of organically modified sol‐gel/chitosan composite material was developed and used for the construction of glucose biosensor. This material provided good biocompatibility and the stabilizing microenvironment around the enzyme. Ferrocene was immobilized on the surface of glassy carbon electrode as a mediator. The characteristics of the biosensor were studied by cyclic voltammetry and chronoamperometry. The effects of enzyme‐loading, buffer pH, applied potential and several interferences on the response of the enzyme electrode were investigated. The simple and low‐cost glucose biosensor exhibited high sensitivity and good stability.  相似文献   

7.
将电化学氧化生成的Pd(Ⅳ)离子配合到直立碳纳米管(ACNTs)上, 使其还原为纳米颗粒(Pb nps), 从而制得Pd nps-ACNTs纳米复合物电极, 经过葡萄糖氧化酶(GOD)进一步修饰后, 制成GOD/Pds nps/ACNTs酶电极, 通过测量GOD和葡萄糖酶促反应中产生的H2O2含量, 进而监测葡萄糖浓度. 实验结果表明, 电极表面大量Pd纳米颗粒的存在显著提高了传感器的检测灵敏度, 使酶电极具有响应时间短(<5 s)及检测电位低(<0.4 V)等优点.  相似文献   

8.
碳纳米管负载铂颗粒酶电极葡萄糖传感器   总被引:6,自引:0,他引:6  
朱玉奴  彭图治  李建平 《分析化学》2004,32(10):1299-1303
以碳纳米管负载纳米铂颗粒修饰玻碳电极 (CNT Pt/GCE)为基底 ,用明胶固定葡萄糖氧化酶(GOD) ,构建了电流型葡萄糖生物传感器 (GOD/CNT Pt/GCE)。在实验中 ,GOD/CNT Pt/GCE显示了良好的分析性能 ,与常规铂电极葡萄糖传感器 (GOD/Pt)相比较 ,测定葡萄糖的检出限从 6 .7× 10 -3 mol/L下降到8.3× 10 -4mol/L ;工作电位从 0 .6 5V下降至 0 .4 5V ;响应时间从 30s下降至 5s左右。实验结果表明 ,具有高度电催化活性的CNT Pt/GCE可作为酶传感器的一种新型基体电极。  相似文献   

9.
Potentiostatic anodization was developed to synthesize copper oxide/copper (CuxO/Cu, x=1,2) electrode with nano structure for sensitive non-enzymatic glucose detection. At a catalytic potential of 0.55 V, the CuO/Cu electrode presented a high sensitivity of 2954.38 μA mM−1 cm−2 to glucose and a linear range of 0.1 mM to 1.3 mM. The response time is less than 3 s with addition of 0.1 mM glucose. The CuO/Cu electrode above was anodized in 1M KOH solution at −100 mV and the morphology was compact nanoparticles and sparsely dispersed nanosheets, which enlarged the surface area and provided abundant electrocatalytic active sites. Compared the sensing property of electrodes with different morphologies, it indicated that nanostructure was significant to the efficient glucose catalytic oxidation process and it could be regulated by changing the potential and electrolyte concentration during anodization.  相似文献   

10.
基于金纳米棒-壳聚糖复合膜的葡萄糖生物传感器   总被引:3,自引:0,他引:3  
本文采用金纳米棒-壳聚糖复合膜固定葡萄糖氧化酶构建电流型葡萄糖生物传感器.通过电化学交流阻抗法和循环伏安法对酶膜状态进行了表征,得到了相应的等效电路和动力学参数.实验结果表明,金纳米棒-壳聚糖复合膜可以辅助电子传递,提高电极的电流响应,并使生物传感器的使用温度范围有很大的扩展.此传感器表现出对葡萄糖溶液浓度的优良响应,线性范围在2.78×10-5mol/L—2.22×10-3mol/L,响应灵敏度约为7.819μA·cm-2(mmol/L)-1,表观米氏常数为10mmol/L.本工作还研究了温度和溶液pH值对电极电流响应的影响.  相似文献   

11.
A highly sensitive and selective glucose biosensor has been developed based on immobilization of glucose oxidase within mesoporous carbon nanotube–titania–Nafion composite film coated on a platinized glassy carbon electrode. Synergistic electrocatalytic activity of carbon nanotubes and electrodeposited platinum nanoparticles on electrode surface resulted in an efficient reduction of hydrogen peroxide, allowing the sensitive and selective quantitation of glucose by the direct reduction of enzymatically‐liberated hydrogen peroxide at ?0.1 V versus Ag/AgCl (3 M NaCl) without a mediator. The present biosensor responded linearly to glucose in the wide concentration range from 5.0×10?5 to 5.0×10?3 M with a good sensitivity of 154 mA M?1cm?2. Due to the mesoporous nature of CNT–titania–Nafion composite film, the present biosensor exhibited very fast response time within 2 s. In addition, the present biosensor did not show any interference from large excess of ascorbic acid and uric acid.  相似文献   

12.
Novel copper (Cu) film composed of pillar‐like structure was synthesized on indium‐doped tin oxide (ITO) substrate by electrodeposition in acetate bath with proline as additive for the first time and used to construct nonenzymatic glucose sensor. When applied to detect glucose, such prepared electrode showed low operating potential (0.4 V), high sensitivity (699.4499 µA mM−1 cm−2), and fast response time (<3 s) compared with other Cu‐based electrodes. In addition, the prepared electrode also offered good anti‐interference ability to ascorbic acid, uric acid and acetaminophen. Present study provides new insights into the control of Cu film morphology for sensor fabrication.  相似文献   

13.
IntroductionIn recent years chemiluminescence (CL)biosensor prepared by immobilization of a sensitivereagent such as peroxidase or oxidase onto a solidmatrix has attracted much attention due to the highsensitivity of the chemiluminescent reaction of thesensitive reagent even with a simple instrument.Generally,CL biosensors can be divided into twocategories.One consists of hydrogen peroxide sen-sors prepared by immobilizing a kind of peroxidaseonto a suitable solid support[1,2 ] ,and the immo…  相似文献   

14.
以二氧化钛纳米管阵列(TNTs)为基底,利用脉冲电沉积的方法将Ni纳米粒子沉积在TNTs管内,通过循环伏安法将Ni转化为铁氰化镍(NiHCF),构造了新型的非酶型葡萄糖生物传感器(NiHCF/TNTs修饰电极)。在优化的实验条件下,传感电极的灵敏度为663μA/(mmol cm2);响应电流与葡萄糖浓度在1~23mmol/L范围内呈现良好的线性关系。在低浓度检测下,线性范围为2×10-3~1.0 mmol/L;检出限为0.5μmol/L。本传感电极具有灵敏度高、稳定性好和抗干扰能力强等特点。  相似文献   

15.
A highly efficient enzyme immobilization method has been developed for electrochemical biosensors using polydopamine films with gold nanoparticles (AuNPs) embedded. This simple enzyme fabrication method can be performed in very mild conditions and stored in a long time with high bioactivity. The fabricated amperometric glucose biosensor exhibited a high and reproducible sensitivity, wide linear dynamic range and low limit of detection (LOD) (0.1 μmol·L?1). A low value of 1.5 mmol·L?1 for the apparent Michaelis‐Menten constant KappM was obtained. The high sensitivity, wide linear range, good reproducibility and stability make this biosensor a promising candidate for portable amperometric glucose biosensor.  相似文献   

16.
用循环伏安法在石墨电极上制得纳米纤维聚苯胺, 并在其上固定葡萄糖氧化酶(GOD)和辣根过氧化物酶(HRP)制备葡萄糖双酶传感器. 用交流阻抗、SEM等技术对其进行表征; 考察了各种因素对双酶电极响应电流的影响以及双酶电极的稳定性. 该传感器对葡萄糖响应电流的测定在0.05 V(vs SCE)下进行, 有效避免了电活性物质的影响, 线性响应范围为0.05-2.0 mmol·L-1.  相似文献   

17.
将天然聚合物褐藻酸钠添加到无机硅溶胶-凝胶膜,获得一种新型的无机/有机杂化膜。用此杂化膜包埋酪氨酸酶,制备电化学苯酚传感器。研究表明:硅溶胶-凝胶/褐藻酸钠复合膜能有效克服纯无机溶胶-凝胶膜的脆性;避免膜的裂开;提供生物酶所适宜的微环境;有效保持所固定酶的生物活性。所制备的传感器测定苯酚的线性响应范围为3.4-93.1μmol/L,其线性回归方程i(μA)=0.0774C(μmol/L) 0.1616,r=0.9980。检出限为1.33μmol/L。  相似文献   

18.
19.
鱼鳔膜为基质的生物传感器测定葡萄糖的研究   总被引:1,自引:0,他引:1  
贾文娟  崔淼  张彦  双少敏 《分析化学》2011,(9):1423-1426
以鱼鳔膜为基质同定葡萄糖氧化酶,偶联氧电极,构建了葡萄糖生物传感器,通过测定溶解氧浓度的变化定量测定葡萄糖.考察了酶浓度、pH值、缓冲液浓度对传感器的影响,优化了实验条件:即酶浓度为1 mg,pH 7.0,缓冲液浓度为100 mmol/L.此传感器具有较宽的线性范围(0.016~1.2 mmol/L),较短的响应时间(...  相似文献   

20.
《Analytical letters》2012,45(7):1143-1157
Abstract

A potentially implantable glucose biosensor for continuous monitoring of glucose levels in diabetic patients has been developed. The glucose biosensor is based on an amperometric oxygen electrode and Glucose Oxidase immobilized on carbon powder held in a form of a liquid suspension. The enzyme material can be replaced (the sensor recharged) without sensor disassembly. Glucose diffusion membranes from polycarbonate (PC) and from polytetrafluorethylene (PTFE) coated with silastic are used.

Sensors were evaluated continuously operating in phosphate buffer solution and in undiluted blood plasma at body temperature. Calibration curves of the sensors were periodically obtained. The sensors show stable performance during at least 1200 hours of operation without refilling of the enzyme. The PTFE membrane demonstrates high mechanical stability and is little effected by long-term operation in undiluted blood plasma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号