首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper presents a study of the forced acoustical response of an open cavity coupled with a semi-infinite space by using acoustic coupled mode theory, an approach analogous to effective non-Hermitian Hamiltonian method. The reduced differential operator of the open cavities and associated frequency-dependent basis functions are obtained in order to describe the sound field in terms of modal expansion. The properties and physical behavior of this expansion are numerically investigated and explained using computational examples.  相似文献   

2.
Acoustic streaming in 2D resonant channels with uniform or non-uniform cross-sections is studied within this work. An inertial force as well as a vibrating boundary are assumed for driving the acoustic field. The method of successive approximations is employed to derive linear equations for calculation of primary acoustic and time-averaged secondary fields including the radiation pressure and the mass transport velocity. The model equations have a standard form which allows their numerical integration using a universal solver; in this case, COMSOL Multiphysics was employed. As this software is based on the finite element method, it is simple and straightforward to perform the calculations with moderate computational costs even for complex geometries, which makes the proposed approach an operative tool for study of acoustic streaming. The numerical results are validated for the case of a rectangular channel by comparison with previously published analytical results; an excellent agreement is found. The numerical results show that the acoustic streaming can be quite complex even in rectangular channels and its structure depends on the manner of driving. Examples of acoustic streaming in wedged and elliptical channels are given to demonstrate a strong dependence of the acoustic streaming structure on the resonator shape.  相似文献   

3.
High mass resolution of sensors based on film bulk acoustic resonators (FBARs) is required for the detection of small molecules with the low concentration.An active control scheme is presented to improve the mass resolution of the FBAR sensors by adding a feedback voltage onto the driving voltage between two electrodes of the FBAR sensors. The feedback voltage is obtained by giving a constant gain and a constant phase shift to the current on the electrodes of the FBAR sensors. The acoustic energy produced by the feedback voltage partly compensates the acoustic energy loss due to the material damping and the acoustic scattering, and thus improves the quality factor and the mass resolution of the FBAR sensors. An explicit expression relating to the impedance and the frequency for an FBAR sensor with the active control is derived based on the continuum theory by neglecting the influence of the electrodes. Numerical simulations show that the impedance of the FBAR sensor strongly depends on the gain and the phase shift of the feedback voltage, and the mass resolution of the FBAR sensor can greatly be improved when the appropriate gain and the phase shift of the feedback voltage are used. The active control scheme also provides an effective solution to improve the resolution of the quartz crystal microbalance (QCM).  相似文献   

4.
Extraordinarily high maximum-to-minimum gas pressure ratios appear in an oscillating closed resonator at its resonance frequency for certain resonator shapes. Using a quasi-one-dimensional model based on the compressible Navier–Stokes equations and a finite volume method, we investigate the transient motion of a fluid inside oscillating axisymmetric tubes, from the quiescent condition to the periodic steady motion. We find that the amplitude of the fast oscillations in pressure increases monotonically to the value of its steady state for a cylindrical tube of constant cross-section, while the amplitude undergoes a spiral toward the final steady state value for conical or horn-cone resonators. We discuss the effects of fluid properties on the transient motions. In addition, we compare our numerical results with available experimental results and find good agreement. In particular, for horn-cone resonators driven by large amplitude force, we find a secondary lower peak in pressure waveform within one period of oscillation at the small end of the cavity, matching the findings of the existing experimental result.  相似文献   

5.
This paper addresses the propagation of high amplitude acoustic pulses through a 1D lattice of Helmholtz resonators connected to a waveguide. Based on the model proposed by Sugimoto (1992), a new numerical method is developed to take into account both the nonlinear wave propagation and the different mechanisms of dissipation: the volume attenuation, the linear viscothermal losses at the walls, and the nonlinear absorption due to the acoustic jet formation in the resonator necks. Good agreement between numerical and experimental results is obtained, highlighting the crucial role of the nonlinear losses. Different kinds of solitary waves are observed experimentally with characteristics depending on the dispersion properties of the lattice.  相似文献   

6.
Acoustic wave propagation from surrounding medium into a soft material can generate acoustic radiation stress due to acoustic momentum transfer inside the medium and material, as well as at the interface between the two. To analyze acoustic-induced deformation of soft materials, we establish an acoustomechanical constitutive theory by com-bining the acoustic radiation stress theory and the nonlinear elasticity theory for soft materials. The acoustic radiation stress tensor is formulated by time averaging the momen-tum equation of particle motion, which is then introduced into the nonlinear elasticity constitutive relation to construct the acoustomechanical constitutive theory for soft materials. Considering a specified case of soft material sheet subjected to two counter-propagating acoustic waves, we demonstrate the nonlinear large deformation of the soft material and ana-lyze the interaction between acoustic waves and material deformation under the conditions of total reflection, acoustic transparency, and acoustic mismatch.  相似文献   

7.
利用波的相干叠加原理推导出一维掺杂声子晶体中SH波缺陷模的透射率公式和频率公式,即建立了缺陷模的相干叠加法。将相干叠加法与转移矩阵法和共振理论进行了比较研究,结果表明缺陷模的相干叠加法具备转移矩阵法和共振理论各自的优点,又克服了转移矩阵法和共振理论各自的不足。相干叠加法是研究一维掺杂声子晶体中SH波缺陷模的一种更有效的方法。  相似文献   

8.
This paper proposes a multi-field coupled dynamics equation for a micro beam. The natural frequencies and the amplitude–frequency relationship of the micro beam in the coupled fields are investigated. Changes in the natural frequencies of the micro beam along with time, bias voltage, and dynamic viscosity of gas are discussed. The effects of the system parameters on the amplitude–frequency relationship are investigated. A number of useful results are obtained. These results are useful in the sensitivity design of resonant micro gas sensors excited by the electrostatic force.  相似文献   

9.
Of the three mutually coupled fundamental processes (shearing, compressing, and thermal) in a general fluid motion, only the general formulation for the compress- ing process and a subprocess of it, the subject of aeroacous- tics, as well as their physical coupling with shearing and thermal processes, have so far not reached a consensus. This situation has caused difficulties for various in-depth complex multiprocess flow diagnosis, optimal configuration design, and flow/noise control. As the first step toward the desired formulation in fully nonlinear regime, this paper employs the operator factorization method to revisit the analytic linear theories of the fundamental processes and their decomposi- tion, especially the further splitting of compressing process into acoustic and entropy modes, developed in 1940s-1980s. The flow treated here is small disturbances of a compressible, viscous, and heat-conducting polytropic gas in an unbounded domain with arbitrary source of mass, external body force, and heat addition. Previous results are thereby revised and extended to a complete and unified theory. The theory pro- vides a necessary basis and valuable guidance for developing corresponding nonlinear theory by clarifying certain basic issues, such as the proper choice of characteristic variables of compressing process and the feature of their governing equations.  相似文献   

10.
This paper presents an investigation of flexural wave band gaps in locally resonant metamaterials (LRMs). An LRM is a periodic structure consisting of repeated unit cells containing a local resonator. Due to the local resonance occurring in the unit cell, the LRM induces a band gap (a frequency band in which no waves propagate). Discrete-like or beam-like resonators have generally been used to realise LRMs in previous research. By extending the beam-like resonator configuration, this paper studies LRMs with a plate-like resonator to exploit its advantages with respect to large design freedom. In order to understand flexural wave band gaps in an LRM with plate-like resonators, parametric studies are conducted with the development of a finite element model. Further, the influences of the plate-like resonator design parameters on flexural wave band gaps are investigated. Based on the parametric studies, the rules governing band gap properties are determined. Finally, tailoring flexural wave band gaps by adjusting the parameters is discussed.  相似文献   

11.
Summary An efficient one-dimensional model is developed for the statics of piezoelectric sandwich beams. Third-order zigzag approximation is used for axial displacement, and the potential is approximated as piecewise linear. The displacement field is expressed in terms of three primary displacement variables and the electric potential variables by satisfying the conditions of zero transverse shear stress at the top and bottom and its continuity at layer interfaces. The deflection field accounts for the piezoelectric transverse normal strain. The governing equations are derived using a variational principle. The present results agree very well with the exact solution for thin and thick highly inhomogeneous simply supported hybrid sandwich beams. The developed theory can accurately model open and closed circuit boundary conditions. The first author is grateful to DST, Government of India, for financial support for this work.  相似文献   

12.
This paper describes a comprehensive non-linear multiphysics model based on the Euler–Bernoulli beam equation that remains valid up to large displacements in the case of electrostatically actuated Mathieu resonators. This purely analytical model takes into account the fringing field effects and is used to track the periodic motions of the sensing parts in resonant microgyroscopes. Several parametric analyses are presented in order to investigate the effect of the proof mass frequency on the bifurcation topology. The model shows that the optimal sensitivity is reached for resonant microgyroscopes designed with sensing frequency four times faster than the actuation one.  相似文献   

13.
Acoustic axes are directions in anisotropic elastic media, in which phase velocities of two or three plane waves (PP, S1S1 or S2S2 waves) coincide. Acoustic axes are important, because they can cause singularities in the field of polarization vectors and anomalies in the shape of the slowness surface. The maximum number of acoustic axes in triclinic anisotropy is 16, and their directions depend on anisotropy parameters in a complicate way. Under weak anisotropy approximation this dependence simplifies and the directions of acoustic axes can be used for the inversion for anisotropy parameters. The maximum acoustic axes under weak anisotropy is 16, the minimum number of acoustic axes is zero. In the inversion, we can retrieve 13 combinations of anisotropy parameters provided we use directions of 7 acoustic axes at least. Under weak anisotropy approximation, the directions of acoustic axes are insensitive to strength of anisotropy; hence we cannot invert for absolute values of weak anisotropy parameters, but only for their relative values. Numerical tests have shown that the inversion is applicable only to very weak anisotropy with strength of less than 5%, provided that the acoustic axes used in the inversion are determined with an accuracy of 0.1°0.1° or better. In this case the inversion yields an average error for elastic parameters of less than 10%. In order to invert for the total set of 21 anisotropy parameters it is necessary to combine the measurements of the directions of the acoustic axes with measurements of other attributes of elastic waves in anisotropic media.  相似文献   

14.
A set of basic deformation modes for hybrid stress finite elements are directly derived from the element displacement field. Subsequently, by employing the so-called united orthogonal conditions, a new orthogonalization method is proposed. The resulting orthogonal basic deformation modes exhibit simple and clear physical meanings. In addition, they do not involve any material parameters, and thus can be efficiently used to examine the element performance and serve as a unified tool to assess different hybrid elements. Thereafter, a convenient approach for the identification of spurious zero-energy modes is presented using the positive definiteness property of a flexibility matrix. Moreover, based on the orthogonality relationship between the given initial stress modes and the orthogonal basic deformation modes, an alternative method of assumed stress modes to formulate a hybrid element free of spurious modes is discussed. It is found that the orthogonality of the basic deformation modes is the sufficient and necessary condition for the suppression of spurious zero-energy modes. Numerical examples of 2D 4-node quadrilateral elements and 3D 8-node hexahedral elements are illustrated in detail to demonstrate the efficiency of the proposed orthogonal basic deformation mode method.  相似文献   

15.
Double-grid Chebyshev spectral elements for acoustic wave modeling   总被引:1,自引:0,他引:1  
Gza Seriani 《Wave Motion》2004,39(4):351-360
Highly accurate algorithms are needed for modeling wave propagation phenomena in realistic media. The spectral element methods, either based on a Chebyshev or a Legendre polynomial basis, have shown their excellent properties of high accuracy and flexibility in describing complex models outperforming other techniques. In contrast with standard grid methods, which use dense spatial meshes, spectral element methods discretize the computational domain in a very coarse mesh. With constant-property elements, this fact may in some cases reduce seriously the computational efficiency. For instance, if the medium is finely heterogeneous, it may need to be described in a much finer way than the acoustic wave field. The double-grid approach presented in this work is a viable way for overcoming this lack of the method and for handling problems where the medium changes continuously or even sharply on the small scale. The variation in the properties is taken into account by using an independent set of shape functions defined on a temporary local grid in such a way that either the small scale fluctuations are accurately handled, without the need of a global finer grid, and the macroscopic wave field propagation is solved with no loose of computational efficiency.  相似文献   

16.
In this paper a mathematical model is given for the scattering of an incident wave from a surface covered with microscopic small Helmholtz resonators, which are cavities with small openings. More precisely, the surface is built upon a finite number of Helmholtz resonators in a unit cell and that unit cell is repeated periodically. To solve the scattering problem, the mathematical framework elaborated in Ammari et al. (2019) is used. The main result is an approximate formula for the scattered wave in terms of the lengths of the openings. Our framework provides analytic expressions for the scattering wave vector and angle and the phase-shift. It justifies the apparent absorption. Moreover, it shows that at specific lengths for the openings and a specific frequency there is an abrupt shift of the phase of the scattered wave due to the subwavelength resonances of the Helmholtz resonators. A numerically fast implementation is given to identify a region of those specific values of the openings and the frequencies.  相似文献   

17.
A numerical method to obtain the neutral curve for the onset of acoustic oscillations in a helium-filled tube is described. Such oscillations can cause a serious heat loss in the plumbing associated with liquid helium dewars. The problem is modelled by a second-order, ordinary differential eigenvalue problem for the pressure perturbation. The numerical method to find the eigenvalues and track the resulting points along the neutral curve is tailored to this problem. The results show that a tube with a uniform temperature gradient along it is much more stable than one where the temperature suddenly jumps from the cold to the hot value in the middle of the tube.  相似文献   

18.
Propagation of high amplitude acoustic pulses is studied in a 1D waveguide connected to a lattice of Helmholtz resonators. An homogenized model has been proposed by Sugimoto (1992), taking into account both the nonlinear wave propagation and various mechanisms of dissipation. This model is extended here to take into account two important features: resonators of different strengths and back-scattering effects. An energy balance is obtained, and a numerical method is developed. A closer agreement is reached between numerical and experimental results. Numerical experiments are also proposed to highlight the effect of defects and of disorder.  相似文献   

19.
A new quantitative concept is introduced in this paper, which may be used to facilitate the measurement of the controllability of a subspace≈subspace controllability degree. Then the concrete form of the subspace controllability degree of a flexible structure is derived, and the errors of subspace controllability degree and dynamical response caused by the substitution of a repeated mode subspace for a closely spaced mode subspace are discussed. All the results show that this substitution is rational under some conditions. The project supported by the National Natural Science Foundation of China and the Doctoral Research Foundation of Chinese Ministry of Education.  相似文献   

20.
董钢  王建国 《计算力学学报》2014,31(4):480-485,494
基于大系统分散控制思想,将大尺度高阶建筑结构系统分解为多个子结构系统;子结构之间的相互耦合作用视为有界广义力,得到以状态方程形式的子结构模型。利用滑模理论的抗摄动条件,设计具有全局稳定的子结构滑动模态轨迹,利用子结构系统局部状态实现全局稳定的控制力条件,并以参数ρi实现各子结构间的调节,建立稳定的分散控制格式。在控制算法中采用了准滑模控制方法,克服变结构滑动模态中的抖振影响。利用本文方法,对20层钢结构基准模型在地震激励下的控制进行设计并数值仿真,验证了该方法的有效性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号