首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 204 毫秒
1.
The three-dimensional axisymmetrical initial-value problem of waves in a two-layered fluid of finite depth by an oscillatory surface pressure is solved. The exact integral solutions for velocity potentials of each layer and wave elevations at the surface and interface are obtained. The uniform asymptotic analysis of the unsteady state of waves is carried out when lower fluid is of infinite depth.  相似文献   

2.
The dynamic responses of an ice-covered fluid to impulsive disturbances are analytically investigated for two- and three-dimensional cases. The initially quiescent fluid of infinite depth is assumed to be inviscid, incompressible and homogenous. The thin ice-cover is modelled as a homogenous elastic plate with negligible inertia. Four types of impulsive concentrated disturbances are considered, namely an instantaneous mass source immersed in the fluid, an instantaneously dynamic load on the plate, an initial impulse on the surface of the fluid, and an initial displacement of the ice plate. The linearized initial-boundary-value problem is formulated within the framework of potential flow. The solutions in integral form for the vertical deflexions at the ice-water interface are obtained by means of a joint Laplace-Fourier transform. The asymptotic representations of the wave motions for large time with a fixed distance-to-time ratio are derived by making use of the method of stationary phase. It is found that there exists a minimal group velocity and the wave system observed depends on the moving speed of the observer. For an observer moving with the speed larger than the minimal group velocity, there exist two trains of waves, namely the long gravity waves and the short flexural waves, the latter riding on the former. Moreover, the deflexions of the ice-plate for an observer moving with a speed near the minimal group velocity are expressed in terms of the Airy functions. The effects of the presence of an ice-cover on the resultant wave amplitudes, the wavelengths and periods are discussed in detail. The explicit expressions for the free-surface gravity waves can readily be recovered by the present results as the thickness of ice-plate tends to zero.  相似文献   

3.
The thermal shock problems involved with fractional order generalized theory is studied by an analytical method. The asymptotic solutions for thermal responses induced by transient thermal shock are derived by means of the limit theorem of Laplace transform. An infinite solid with a cylindrical cavity subjected to a thermal shock at its inner boundary is studied. The propagation of thermal wave and thermal elastic wave, as well as the distributions of displacement,temperature and stresses are obtained from these asymptotic solutions. The investigation on the effect of fractional order parameter on the propagation of two waves is also conducted.  相似文献   

4.
We consider the initial-value problem for a system of coupled Boussinesq equations on the infinite line for localised or sufficiently rapidly decaying initial data, generating sufficiently rapidly decaying right- and left-propagating waves. We study the dynamics of weakly nonlinear waves, and using asymptotic multiple-scale expansions and averaging with respect to the fast time, we obtain a hierarchy of asymptotically exact coupled and uncoupled Ostrovsky equations for unidirectional waves. We then construct a weakly nonlinear solution of the initial-value problem in terms of solutions of the derived Ostrovsky equations within the accuracy of the governing equations, and show that there are no secular terms. When coupling parameters are equal to zero, our results yield a weakly nonlinear solution of the initial-value problem for the Boussinesq equation in terms of solutions of the initial-value problems for two Korteweg-de Vries equations, integrable by the Inverse Scattering Transform. We also perform relevant numerical simulations of the original unapproximated system of Boussinesq equations to illustrate the difference in the behaviour of its solutions for different asymptotic regimes.  相似文献   

5.
We study possible steady states of an infinitely long tube made of a hyperelastic membrane and conveying either an inviscid, or a viscous fluid with power-law rheology. The tube model is geometrically and physically nonlinear; the fluid model is limited to smooth changes in the tube’s radius. For the inviscid case, we analyse the tube’s stretch and flow velocity range at which standing solitary waves of both the swelling and the necking type exist. For the viscous case, we first analyse the tube’s upstream and downstream limit states that are balanced by infinitely growing upstream (and decreasing downstream) fluid pressure and axial stress caused by fluid viscosity. Then we investigate conditions that can connect these limit states by a single solution. We show that such a solution exists only for sufficiently small flow speeds and that it has a form of a kink wave; solitary waves do not exist. For the case of a semi-infinite tube (infinite either upstream or downstream), there exist both kink and solitary wave solutions. For finite-length tubes, there exist solutions of any kind, i.e. in the form of pieces of kink waves, solitary waves, and periodic waves.  相似文献   

6.
The complex function method used in the solution of static stress concentration around an irregularly shaped cavity in an infinite elastic plane is generalized to the case of dynamic loading. This paper presents the solutions of two dimensional elastic wave equations in terms of complex wave functions, and general expressions for boundary conditions for steady state incident waves. Dynamic stresses around a cavity of arbitrary shape are then expressed in series of complex ‘domain functions’, the coefficient of the series can be determined by truncating a set of infinite algebraic equations. Results of dynamic stress concentration factors for circular and elliptical cavities are given in this paper.  相似文献   

7.
Shock waves in homogeneous materials in the absence of phase transitions are understood to have a one-wave structure. However, upon loading of a layered heterogeneous material system a two-wave structure is obtained––a leading shock front followed by a complex pattern that varies with time. This dual shock-wave pattern can be attributed to material architecture through which the shock wave propagates, i.e. the impedance (and geometric) mismatch present at various length scales, and nonlinearities arising from material inelasticity and failure.The objective of the present paper is to provide a better understanding of the role of material architecture in determining the structure of weak shock waves in 2-D layered material systems. Normal plate-impact experiments are conducted on 2-D layered material targets to obtain both the precursor decay and the late-time dispersion. The particle velocity at the free surface of the target plate is measured by using a multi-beam VALYN VISAR. In order to understand the effects of layer thickness and the distance of wave propagation on elastic precursor decay and late-time dispersion several different targets with various layer and target thicknesses are employed. Moreover, in order to understand the effects of material inelasticity both elastic–elastic and elastic–viscoelastic bilaminates are utilized.The results of these experiments are interpreted by using asymptotic techniques to analyze propagation of acceleration waves in 2-D layered material systems. The analysis makes use of the Laplace transform and Floquet theory for ODE’s with periodic coefficients [Asymptotic solutions for wave propagation in elastic and viscoelastic bilaminates. In: Developments in Mechanics, Proceedings of the 14th Mid-Eastern Mechanics Conference, vol. 26, no. 8, pp. 399–417]. Both wave-front and late-time solutions for step-pulse loading on layered half-space are compared with the experimental observations. The results of the study indicate that the structure of acceleration waves is strongly influenced by impedance mismatch of the layers constituting the laminates, density of interfaces, distance of wave propagation, and the material inelasticity.  相似文献   

8.
Dehai Luo 《Wave Motion》2001,33(4):339-347
In the paper, with the help of a perturbation expansion method a new higher order nonlinear Schrödinger (HNLS) equation is derived to describe nonlinear modulated Rossby waves in the geophysical fluid. Using this equation, the modulational wave trains are discussed. It is found that the higher order terms favor the instability growth of modulational disturbances superimposed on uniform Rossby wave trains, but the instability region becomes narrower. In addition, the latitude and uniform background basic flow are found to affect the instability growth rate and instability region of uniform Rossby wave train. However, for a geostrophic flow the background basic flow does not affect the modulational instability of uniform Rossby wave train.  相似文献   

9.
In this paper, we investigate the steady momentum and heat transfer of a viscous fluid flow over a stretching/shrinking sheet. Exact solutions are presented for the Navier-Stokes equations. The new solutions provide a more general formulation including the linearly stretching and shrinking wall problems as well as the asymptotic suction velocity profiles over a moving plate. Interesting non-linear phenomena are observed in the current results including both exponentially decaying solution and algebraically decaying solution, multiple solutions with infinite number of solutions for the flow field, and velocity overshoot. The energy equation ignoring viscous dissipation is solved exactly and the effects of the mass transfer parameter, the Prandtl number, and the wall stretching/shrinking strength on the temperature profiles and wall heat flux are also presented and discussed. The exact solution of this general flow configuration is a rare case for the Navier-Stokes equation.  相似文献   

10.
Linear axisymmetric Stokes flow over a porous spherical particle is investigated. An exact analytic solution for the fluid velocity components and the pressure inside and outside the porous particle is obtained. The solution is generalized to include the cases of arbitrary three-dimensional linear shear flow as well as translational-shear Stokes flow. As the permeability of the particle tends to zero, the solutions obtained go over into the corresponding solutions for an impermeable particle. The problem of translational Stokes flow around a spherical drop (in the limit a gas bubble or an impermeable sphere) was considered, for example, in [1,2]. A solution of the problem of translational Stokes flow over a porous spherical particle was given in [3]. Linear shear-strain Stokes flow over a spherical drop was investigated in [2].Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 113–120, May–June, 1995.  相似文献   

11.
The motion of thin films of a viscous incompressible liquid in a gas under the action of capillary forces is studied. The surface tension depends on the surfactant concentration, and the liquid is nonvolatile. The motion is described by the well-known model of quasi-steady-state viscous film flow. The linear-wave solutions are compared with the solution using the Navier-Stokes equations. Situations are studied where a solution close to the inviscid two-dimensional solutions exists and in the case of long wavelength, the occurrence of sound waves in the film due to the Gibbs surface elasticity is possible. The behavior of the exact solutions near the region of applicability of asymptotic equations is studied, and nonmonotonic dependences of the wave characteristics on wavenumber are obtained. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 48, No. 3, pp. 103–111, May–June, 2007.  相似文献   

12.
The theory of vibrations and waves in natural and synthesized materials of regular structure is analyzed. Models based on different averaging and continualization methods are outlined. Emphasis is on periodically inhomogeneous structures. The exact solutions are obtained and analyzed using the closed-form solution of infinite algebraic systems, representing equations in Hamiltonian operator form and solving them based on the theory of differential equations with periodic coefficients, mode selection rule, and methods of drawing wave shapes at limit and arbitrary frequencies  相似文献   

13.
The field of internal gravity waves in a layer of an arbitrary stratified fluid is studied for critical generation modes and in the vicinity of trajectories of motion of the perturbation sources. The exact solutions describing the structure of a separate mode of the wave field in the vicinity of the perturbation source in the critical generation modes are investigated, and expressions for the total field representing the sum of all wave modes are obtained. In the vicinity of the trajectories of the perturbation sources, asymptotic representations of the eigenfunctions and eigenvalues of the basic vertical spectral problem of internal waves are constructed in the approximation of large wave numbers and asymptotic expressions for a separate mode of the wave field are obtained that describe the spatial structure and features of the fields of internal gravity waves. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 49, No. 5, pp. 70–79, September–October, 2008.  相似文献   

14.
In this work, the generalized thermoelastic solutions with bounded boundaries for the transient shock problem are proposed by an asymptotic method. The governing equations are taken in the context of the generalized thermoelasticity with one relaxation time (L–S theory). The general solutions for any set of boundary conditions are obtained in the physical domain by the Laplace transform techniques. The corresponding asymptotic solutions for a thin plate with finite thickness, subjected to different sudden temperature rises in its two boundaries, are obtained by means of the limit theorem of Laplace transform. In the context of these asymptotic solutions, two specific problems with different boundary conditions have been conducted. The distributions of displacement, temperature and stresses, as well as the propagations, intersections and reflections of two elastic waves, named as thermoelastic wave and thermal wave separately, are obtained and plotted. These results are agreed with the results obtained in the existing literatures.  相似文献   

15.
本文从Euler方程出发讨论在均匀剪切流动中的Stokes波·把未知函数和波速展开成渐近级数,利用Fredholm择一定理来确定待定常数。得到了在均匀剪切流中二阶波形并研究了均匀剪切流对增水的影响。当流速为零时,本文的结果就退化为已有的在静水中的stokes波。  相似文献   

16.
The solutions of initial and boundary value problems of the outflow of an ideal (inviscid and non-heat-conducting) gas from cylindrical and spherical sources into a vacuum are obtained. Time is measured from the moment, when the source is turned on; at this moment the source is surrounded by a vacuum. The entropy, flow rate, and the Mach number of the gas outflowing from the source are given, together with the source radius; the Mach number can be greater of or equal to unity. If the source radius is greater than zero, then the flow domain in the “radial coordinate–time” plane consists of the stationary source flow and adjoining non-self-similar centered expansion wave consisting of C?-characteristics. The stationary flow is described by the known formulas, while the expansion wave is calculated by the method of characteristics. The calculations by this method confirm the earlier obtained laws for large values of the radial coordinate. The interface between the vacuum and the expansion wave is the straight trajectory of particles and, at the same time, a unique rectilinear C?-characteristic. For the source of zero radius (“pointwise” source) the velocity, density, and speed of sound of the outflowing gas are infinite. The gas velocity remains infinite everywhere, while the density and speed of sound become zero for any non-zero values of the radial coordinate. For the pointwise source the problem of outflow into a vacuum is self-similar. In the plane of the “self-similar” velocity and speed of sound its solution is given by three singular points of a differential equation in these variables. At one of these points the self-similar velocity is infinite, the self-similar speed of sound is zero, and the self-similar independent variable varies from zero to infinity, with the exception of the extreme values.  相似文献   

17.
In this paper, we study the propagation of high-intensity acoustic noise in free space and in waveguide systems. A mathematical model generalizing the Burgers equation is used. It describes the nonlinear wave evolution inside tubes of variable cross-section, as well as in ray tubes, if the geometric approximation for heterogeneous media is used. The generalized equation transforms to the common Burgers equation with a dissipative parameter, known as the “Reynolds–Goldberg number”. In our model, this number depends on the distance travelled by the wave. With a zero “viscous” dissipative term, the model reduces to the Riemann (or Hopf) equation. Its solution presents the field by an implicit function. The spectral form of this solution makes it possible to derive explicit expressions for both dynamic and statistical characteristics of intense waves. The use of a spectral approach allowed us to describe the high-intensity noise in media with zero and finite viscosity. Applicability conditions of these solutions are defined. Since the phase matching is fulfilled for any triplet of interacting spectral components, there is an avalanche-like increase in the number of harmonics and the formation of shocks. The relationship between these discontinuities and other singularities and the high-frequency asymptotic of intense noise is studied. The possibility is shown to enhance nonlinear effects in waveguide systems during the evolution of noise.  相似文献   

18.
19.
《Wave Motion》1987,9(4):289-300
A plane sound wave is incident upon two semi-infinite rigid plates, lying along y = 0, x > 0 and y = -h, x < 0, respectively, where (x, y) are two-dimensional Cartesian coordinates. The problem is formulated into a matrix Wiener-Hopf equation which is uncoupled by the introduction of an infinite sum of poles. The exact solution is then easily obtained in terms of the coefficients of the poles, where these coefficients are shown to satisfy a linear system of algebraic equations. The far-field solution is obtained and an asymptotic approximation to the total potential is determined in the limit as h, the plate spacing, becomes small compared to the wavelength of the incident wave. The algebraic system is solved numerically in this limit and the results are shown to agree with those obtained by the method of matched asymptotic expansions.  相似文献   

20.
The solution of the ideal gasdynamic equations describing propagation of a shock wave initiated, for example, by the motion of a piston against an inhomogeneous static background is considered. The solution is constructed in the form of Taylor series in a special time variable which is equal to zero on the shock wave. In the case of weak shock waves divergence of the series serves as the constraint for such an approach. Then the solution is constructed by linearizing the equations about the solution with a weak discontinuity. In the case of a given background the last solution can be always found exactly by solving successively a set of transport equations, all these equations are reduced to linear ordinary differential equations. The presentation begins from the one-dimensional solutions with plane waves and ends by discussion of spatial problems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号