首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 15 毫秒
1.
This work investigates the pressure amplification experienced behind a rigid, porous barrier that is exposed to a planar shock. Numerical simulations are performed in two dimensions using the full Navier–Stokes equations for a M = 1.3 incoming shock wave. An array of cylinders is positioned at some distance from a solid wall and the shock wave is allowed to propagate past the barrier and reflect off the wall. Pressure at the wall is recorded and the flowfield is examined using numerical schlieren images. This work is intended to provide insight into the interaction of a shock wave with a cloth barrier shielding a solid boundary, and therefore the Reynolds number is small (i.e., Re = 500 to 2000). Additionally, the effect of porosity of the barrier is examined. While the pressure plots display no distinct trend based on Reynolds number, the porosity has a marked effect on the flowfield structure and endwall pressure, with the pressure increasing as porosity decreases until a maximum value is reached.   相似文献   

2.
The problem of the diffraction of surface waves, obliquely incident on a partially immersed fixed vertical barrier in deep water, is solved approximately by reducing it to the solution of an integral equation, for small angle of incidence of the incident wave. The corrections to the reflection and transmission coefficients over their normal incidence values for small angle of incidence are obtained and presented graphically for some intermediate values of wave numbers.  相似文献   

3.
In this article, we consider a two-phase flow model in a heterogeneous porous column. The medium consists of many homogeneous layers that are perpendicular to the flow direction and have a periodic structure resulting in a one-dimensional flow. Trapping may occur at the interface between a coarse and a fine layer. Assuming that capillary effects caused by the surface tension are in balance with the viscous effects, we apply the homogenization approach to derive an effective (upscaled) model. Numerical experiments show a good agreement between the effective solution and the averaged solution taking into account the detailed microstructure.  相似文献   

4.
A fluid flow and heat transfer model has been developed for the reactive, porous bed of the biomass gasifier to simulate pressure drop, temperature profile in the bed and flow rates. The conservation equations, momentum equation and energy equation are used to describe fluid and heat transport in porous gasifier bed. The model accounted for drag at wall, and the effect of radial as well as axial variation in bed porosity to predict pressure drop in bed. Heat transfer has been modeled using effective thermal conductivity approach. Model predictions are validated against the experiments, while effective thermal conductivity values are tested qualitatively using models available in literature. Parametric analysis has been carried out to investigate the effect of various parameters on bed temperature profile and pressure drop through the gasifier. The temperature profile is found to be very sensitive to gas flow rate, and heat generation in oxidation zone, while high bed temperature, gas flow rate and the reduction in feedstock particle size are found to cause a marked increase in pressure drop through the gasifier. The temperatures of the down stream zones are more sensitive to any change in heat generation in the bed as compared to upstream zone. Author recommends that the size of preheating zone may be extended up to pyrolysis zone in order to enhance preheating of input air, while thermal insulation should not be less than 15 cm.  相似文献   

5.
A. Levy  G. Ben-Dor  S. Sorek 《Shock Waves》1998,8(3):127-137
A numerical parametric study of the flow field which develops when a planar shock wave impinge on a rigid porous material is presented. This study complements an earlier study (Levy et al. 1996a) where the values of some dominating parameters were estimated and the dependence of the resulting flow field on these values was not checked. Received 22 April 1996 / Accepted 5 January 1997  相似文献   

6.
The effect of the Mach number and the concentration and mass ratios on the behavior of the parallel, radial, and total temperatures of the components in a shock wave in a binary gas mixture is studied. The results obtained are compared with the theoretical and experimental results of other investigators.  相似文献   

7.
This paper gives experimental data on the propagation speed and height of a dam-break wave arising in the tailwater region during a partial dam break event. These data were used to confirm the Khristianovich calculation method. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 50, No. 3, pp. 97–103, May–June, 2009.  相似文献   

8.
Deep bed filtration of particle suspensions in porous media occurs during water injection into oil reservoirs, drilling fluid invasion of reservoir production zones, fines migration in oil fields, industrial filtering, bacteria, viruses or contaminants transport in groundwater etc. The basic features of the process are particle capture by the porous medium and consequent permeability reduction. Models for deep bed filtration contain two quantities that represent rock and fluid properties: the filtration function, which is the fraction of particles captured per unit particle path length, and formation damage function, which is the ratio between reduced and initial permeabilities. These quantities cannot be measured directly in the laboratory or in the field; therefore, they must be calculated indirectly by solving inverse problems. The practical petroleum and environmental engineering purpose is to predict injectivity loss and particle penetration depth around wells. Reliable prediction requires precise knowledge of these two coefficients. In this work we determine these quantities from pressure drop and effluent concentration histories measured in one-dimensional laboratory experiments. The recovery method consists of optimizing deviation functionals in appropriate subdomains; if necessary, a Tikhonov regularization term is added to the functional. The filtration function is recovered by optimizing a non-linear functional with box constraints; this functional involves the effluent concentration history. The permeability reduction is recovered likewise, taking into account the filtration function already found, and the functional involves the pressure drop history. In both cases, the functionals are derived from least square formulations of the deviation between experimental data and quantities predicted by the model.  相似文献   

9.
Summary  The problem of water wave scattering by an inclined thin plate submerged in water of uniform finite depth is investigated here under the assumption of irrotational motion and linear theory. A hypersingular integral equation formulation of the problem is obtained by an appropriate use of Green's integral theorem followed by utilization of the boundary condition on the plate. This hypersingular integral equation involves the discontinuity in the potential function across the plate, which is approximated by a finite series involving Chebyshev polynomials. The coefficients of this finite series are obtained numerically by collocation method. The quantities of physical interest, namely the reflection and transmission coefficients, force and moment acting on the plate per unit width, are then obtained numerically for different values of various parameters, and are depicted graphically against the wavenumber. Effects of finite-depth water, angle of inclination of the plate with the vertical over the deep water and vertical plate results for these quantities are shown. It is observed that the deep-water results effectively hold good if the depth of the mid-point of the submerged plate below the free surface is of the order of one-tenth of the depth of the bottom. Received 30 November 2000; accepted for publication 26 June 2001  相似文献   

10.
In this paper, the dual integral formulation is derived for the modified Helmholtz equation in the propagation of oblique incident wave passing a thin barrier (zero thickness) by employing the concept of fast multipole method (FMM) to accelerate the construction of an influence matrix. By adopting the addition theorem, the four kernels in the dual formulation are expanded into degenerate kernels that separate the field point and the source point. The source point matrices decomposed in the four influence matrices are similar to each other or only to some combinations. There are many zeros or the same influence coefficients in the field point matrices decomposed in the four influence matrices, which can avoid calculating the same terms repeatedly. The separable technique reduces the number of floating‐point operations from O((N)2) to O(N loga(N)), where N is the number of elements and a is a small constant independent of N. Finally, the FMM is shown to reduce the CPU time and memory requirement, thus enabling us to apply boundary element method (BEM) to solve water scattering problems efficiently. Two‐moment FMM formulation was found to be sufficient for convergence in the singular equation. The results are compared well with those of conventional BEM and analytical solutions and show the accuracy and efficiency of the FMM. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
 As is widely acknowledged, morphology in most materials is far more sensitive to extensional than to shear deformations but, unfortunately, due to the experimental difficulties involved, there are no non-destructive, morphology probing techniques in such flows, i.e., the equivalent of stress relaxation and oscillatory experiments in shear flows. This paper tries to overcome some of those drawbacks by proposing an experimental technique that allows stress relaxation experiments after a step strain in uniaxial extension to be performed. The benefits of this technique are twofold: (a) while the deformation is small enough for the response to be in the linear viscoelastic regime it constitutes a probe of the microstructure of the material and (b) it allows the departure to the non-linear regime to be studied, useful, for example, for the definition of the damping function in uniaxial extensional flow or for the study of the response of materials to fast transient flows with a strong extensional component, such as contraction flows. In this work the proposed technique, which requires a correction to the apparent (theoretical) strain rate in order to allow the calculation of the true Hencky strains attained during the strain step, is tested and validated for two polyisobutylene melts. Received: 9 April 2001 Accepted: 26 July 2001  相似文献   

12.
The plane problem of steady-state small oscillations of a horizontal cylinder located at the interface between two fluids of different densities and indefinite depth is considered in the linear formulation. Boundary integral equations for the surface source distribution are derived. The behavior of the distributed singularities at points of intersection of the body contour and the interface is investigated. The problem of oscillations of a circular cylinder is solved by the multipole expansion method. The apparent mass and damping coefficients of the radiation problem and the reflection coefficient of the problem of scattering of an impinging wave by a floating body are calculated.  相似文献   

13.
In this paper, the scattering of harmonic anti-plane shear waves by a finite crack in infinitely long strip is studied using the non-local theory. The Fourier transform is applied and a mixed boundary value problem is formulated. Then a set of dual integral equations is solved using the Schmidt method instead of the first or the second integral equation method. A one-dimensional non-local kernel is used instead of a two-dimensional one for the anti-plane dynamic problem to obtain the stress occurring at the crack tips. Contraty to the classical elasticity solution, it is found that no stress singularity is present at the crack tip. The non-local dynamic elastic solutions yield a finite hoop stress at the crack tip, thus allowing for a fracture criterion based on the maximum dynamic stress hypothesis. The finite hoop stress at the crack tip depends on the crack length, the width of the strip and the lattice parameter. Supported by the Post Doctoral Science Foundation of Heilongjiang Province, the Natural Science Foundation of Heilongjiang Province and the National Foundation for Excellent Young Investigators.  相似文献   

14.
Solutions of the problem of reflection of a stepwise pressure wave in a linearly compressed fluid from a flat boundary of a porous medium of infinite length saturated by the same fluid are obtained in the acoustic approximation. Based on analytical solutions, a numerical analysis is performed to reveal the specific features of the reflected and incident waves, depending on porosity and permeability of the porous half-space. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 5, pp. 16–26, September–October, 2006.  相似文献   

15.
A capacitive sensor-based apparatus has been settled to determine the liquid water amount and dielectric constant in consolidated porous media. This technique relies on the dielectric properties of water, air, and mineral substrate. The experimental procedure is described for successively oven-dried samples at 323 K. It allows us to determine the sample dielectric constant as a function of the sample water amount. For limestones from Caen region, an affine relationship is found at 293 K. This is then compared with other empirical soils data and with existing homogeneisation techniques applied to undeformable heterogeneous dielectrics. To cite this article: T. Fen-Chong et al., C. R. Mecanique 332 (2004).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号