首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the cyclotron resonance (CR) spectra of two-dimensional (2D) electrons in InAs quantum wells, the CR line splitting is observed. The splitting is found to be an oscillating function of magnetic field. The oscillations do not correlate with the filling factor. The experimental results are interpreted in terms of the spin-orbit splitting in the presence of a built-in electric field appearing due to the asymmetry of the quantum-well potential. From the splitting of the CR line, the spin-orbit coupling constant αso is determined. The resulting value agrees well with the value obtained for the same sample from the Shubnikov-de Haas oscillations. The role of the resonance interaction of charge carriers in the well with the interface donor states is discussed.  相似文献   

2.
We present a comparative study of two different spectroscopic techniques in order to determine the valence band offset in CdTe/(CdMn)Te quantum wells. On the one hand the energy difference between heavy- and light-hole excitons as a function of the heavy-hole transition energy is employed. We determine a valence band offset of Qv=0.30 for CdTe/(CdMn)Te, which is valid in the whole range of investigated Mn-contents up to x=0.27. An alternative determination of the valence band potential height is based on the tuning of potential heights due to external magnetic fields in semimagnetic quantum wells. Analysing the Zeeman splitting of the heavy-hole exciton in CdTe/(CdMn)Te quantum wells with different Mn-contents, we demonstrate a significant decrease of the valence band offset with increasing Mn-content in the barrier. From the comparison of the two different spectroscopic methodes including published data, we conclude that the valence band offset derived from the Zeeman splitting in CdTe/(CdMn)Te quantum wells with high Mn-content is strongly underestimated.  相似文献   

3.
Cyclotron resonance (CR) of inversion electrons on InSb is studied in magnetic fields tilted away from the surface normal. Particularly, a pronounced splitting of the CR signals into two distinct resonances is observed. When the magnetic field is parallel to the inversion layer one of the two resonances vanishes and the other evolves into a bulk like CR at sufficiently low electron densities and in sufficiently high resonance magnetic fields. The different absorption modes are explained by a strong coupling of the electric and magnetic quantization on InSb in tilted magnetic fields.  相似文献   

4.
We have carried out cyclotron resonance (CR) measurements of (InGaAs)8/(AlAs)8 superlattice (SL) to investigate electronic properties of the SL under pulsed ultra-high magnetic fields. The magnetic fields up to 160 T were generated by using the single-turn-coil technique. Clear CR signals were obtained in the transmission of far-infrared laser through the SL at room temperature and lower temperature. We observed a shift of CR peak to lower magnetic field caused by transition from free-electron CR to impurity CR below 90 K. Compared with the previous works of GaAs/AlAs SL, the peak shift was small and the transition temperature was low. This result suggests that a binding energy of the impurity in the InGaAs/AlAs SL is smaller than the GaAs/AlAs SL.  相似文献   

5.
By measuring the angles at which the Landau levels overlap in tilted magnetic fields (the coincidence method), we determine the splitting of the conduction-band valleys in high-mobility two-dimensional electrons confined to AlAs quantum wells. The data reveal that, while the valleys are nearly degenerate in the absence of magnetic field, they split as a function of perpendicular magnetic field. The splitting appears to depend primarily on the magnitude of the perpendicular component of the magnetic field, suggesting electron-electron interaction as its origin.  相似文献   

6.
A detailed experimental study of electron cyclotron resonance (CR) has been carried out at 4.2 K in three modulation-doped GaAs/Al0.3Ga0.7As multiple quantum well samples in fields up to 30 T. A strong avoided-level-crossing splitting of the CR energies due to resonant magnetopolaron effects is observed for all samples near the GaAs reststrahlen region. Resonant splittings in the region of AlAs-like interface phonon modes of the barriers are observed in two samples with narrower well width and smaller doping concentration. The interaction between electrons and the AlAs interface optical phonon modes has been calculated for our specific sample structures in the framework of the memory-function formalism. The calculated results are in good agreement with the experimental results, which confirms our assignment of the observed splitting near the AlAs-like phonon region is due to the resonant magnetopolaron interaction of electrons in the wells with AlAs-like interface phonons.  相似文献   

7.
Low-temperature photoluminescence and photoluminescence excitation spectra of GaAs/AlGaAs semiconductor superlattices having different potential barrier widths (b=20, 30, 50, and 200 Å), i.e., degrees of tunnel coupling between quantum wells, are studied in magnetic fields up to 5 T oriented parallel and perpendicular to the layers of the structure. The changes in the qualitative character of the photoluminescence excitation spectra observed in a parallel magnetic field with increasing tunnel transparency of the barrier correspond to a transition from a quasi-two-dimensional to a quasi-three-dimensional electronic spectrum as a miniband develops in the superlattice. In the photoluminescence excitation spectra of the superlattice with b=50 Å, as the parallel magnetic field is increased, a new line appears in the violet wing of the spatially indirect exciton excitation line, which is absent in a perpendicular field. A similar line was also observed to arise in the photoluminescence spectra. It is shown that the indirect exciton luminescence line can be suppressed by both parallel and perpendicular magnetic fields.  相似文献   

8.
Faraday rotation of a laser beam and emission spectroscopy to resolve Zeeman splitting provide information about the plasma magnetic field, integrated along the line of sight. Information about the local magnetic field strength can be obtained using a dye laser tuned off the center of an atomic or ionic transition by an amount δλz. If the absorption linewidth of the transition probed is less than the Zeeman splitting, only those atoms/ions residing in a magnetic field where the Zeeman splitting is δλz will resonantly absorb energy from the laser and fluoresce. The feasibility of this magnetic field contour technique was studied in a low-pressure neon discharge. A conductor insulated from the discharge generated a large magnetic field in the discharge free of the Stark broadening effects associated with large plasma currents. The laser-induced fluorescence (LIF) intensity profile measured along the laser beams had peaks at those spatial locations where local magnetic fields, inferred from the conductor current, agreed with the Zeeman shifted wavelength of the laser  相似文献   

9.
Raman scattering experiments in paramagnetic uniaxial CeF3 at helium temperature demonstrate a splitting of some degenerate (Eg)-phonon states in an external magnetic field parallel to the crystal axis. A linear splitting is observed in low fields, followed by a field independent (saturation) splitting in high fields. In addition, changes in the Raman scattering efficiencies and a reduction of the line width of phonon transitions are observed with increasing magnetic fields. No such effects are observed for magnetic fields perpendicular to the crystal axis. The splittings of degenerate phonon modes are related to the paramagnetic saturation 〈Sz〉.  相似文献   

10.
Cyclotron resonance (CR) of high density GaAs quantum wells exhibits well-resolved spin splitting above the LO-phonon frequency. The spin-up and spin-down CR frequencies are reversed relative to the order expected from simple band nonparabolicity. We demonstrate that this is a consequence of the blocking of the polaron interaction which is a sensitive function of the filling of the Landau levels.  相似文献   

11.
Among the III–V semiconductors, InSb has the smallest electron effective mass and the largest g-factor. We make use of these properties to explore some aspects of electron spin in InSb quantum wells with far-infrared magneto-spectroscopy. We observe the clear signature of spin-resolved cyclotron resonance caused by the non-parabolicity of the conduction band. We observe avoided-level crossings at magnetic fields where Landau levels of the same spin are predicted to intersect. We also study electron spin resonance in the far infrared over a wide range of magnetic field. In samples with symmetrically designed quantum wells we find cyclotron masses and observed g-factors in good agreement with a Pidgeon–Brown analysis adapted to the two-dimensional band structure. However, the spin splitting approaches 3 meV as the magnetic field approaches zero in samples intentionally asymmetrically doped.  相似文献   

12.
《Physics letters. A》2001,282(6):407-414
Two schemes for steady stimulated phonon generation (saser, i.e., phonon laser) are proposed. The first scheme exploits a narrow-gap indirect semiconductor or analogous indirect gap semiconductor heterostructure where the tuning into resonance of one-phonon transition of electron–hole recombination can be carried out by external pressure, magnetic or electric fields. The second scheme uses one-phonon transition between direct and indirect exciton levels in coupled quantum wells. The tuning into the resonance of this transition can be accomplished by engineering of dispersion of indirect exciton by external in-plane magnetic and normal electric fields. In the second scheme the magnitude of phonon wave vector is determined by magnitude of in-plane magnetic field and, therefore, such a saser is tunable. Both schemes are analyzed and estimated numerically.  相似文献   

13.
The polarization of emission lines formed in a medium immersed in external electric and magnetic fields is studied. The electric field is assumed to be quadrupolar in nature, while the magnetic field is uniform. We show that the quadrupole electric field produces line splitting which is characteristically different from the Zeeman effect. While the line components emitted along the quantization axis are circularly polarized in Zeeman effect, they are, in contrast, linearly polarized in the case of a pure quadrupole electric field. The emission perpendicular to the quantization axis produces three linearly polarized components in Zeeman effect, whereas only two linearly polarized components are observed in the case of quadrupole electric fields. Lack of azimuthal symmetry in the quadrupole electric field leads to polarized line components which appear quite differently for different azimuthal angles of the line of sight.  相似文献   

14.
We report on the photoluminescence and its excitation spectra of mixed type I - type II GaAs/AlAs quantum wells (MTQW) under applied magnetic fields. These structures consist of alternating narrow and wide wells and are designed so that the electron density in the wide well can be optically controlled. A transition from excitonic to free carrier recombination is observed as the electron density is increased.  相似文献   

15.
Because of the Zeeman splitting effect in diluted semiconductor (Zn,Cd,Mn)Se, the absorption spectrum of ZnSe/(Zn,Cd,Mn)Se quantum wells can be adjusted by magnetic field effectively. Within the effective-mass approximation, the conduction electronic structure and the absorption spectrum of ZnSe/(Zn,Cd,Mn)Se quantum wells subjected to in-plane magnetic fields are investigated. Our theoretical results show that it is possible to use the ZnSe/(Zn,Cd,Mn)Se quantum well as magnetically tunable terahertz photodetectors.  相似文献   

16.
We report the first direct observation of the influence of high magnetic fields on the Jahn-Teller (JT) transition in TbVO(4). Contrary to spectroscopic and magnetic methods, x-ray diffraction directly measures the JT distortion; the splitting between the (311)/(131) and (202)/(022) pairs of Bragg reflections is proportional to the order parameter. Our experimental results are compared to mean-field calculations, taking into account all possible orientations of the grains relative to the applied field, and qualitative agreement is obtained.  相似文献   

17.
We have studied CR lineshape of terahertz-light-induced current in InAs quantum wells in tilted quantizing magnetic fields. We have observed dramatic modification of the lineshape with increasing of in-plane component of magnetic field as well as with increasing of transverse built-in electric field in the well. Scenario of the modification shows that the energy spectrum asymmetry is determined by so-called toroidal moment of the system and is a function of Landau quantum number. Macroscopic self-organization of electrons under the conditions of quantum Hall effect has also been directly demonstrated in both linear and saturation regimes of the light absorption.  相似文献   

18.
HAO Ya-Fei 《理论物理通讯》2012,57(6):1071-1075
We theoretically investigate the spin splitting in four undoped asymmetric quantum wells in the absence of external electric field and magnetic field. The quantum well geometry dependence of spin splitting is studied with the Rashba and the Dresselhaus spin-orbit coupling included. The results show that the structure of quantum well plays an important role in spin splitting. The Rashba and the Dresselhaus spin splitting in four asymmetric quantum wells are quite different. The origin of the distinction is discussed in this work.  相似文献   

19.
We show theoretically that in quantum wells subjected to a strong magnetic field the intersubband current peaks at magnetic field values, which reveal the underlying specific intersubband scattering mechanism. We have designed and grown a superlattice structure in which such current oscillations are clearly visible, and in which the transition from the purely single-electron to the mixed single- and two-electron scattering regimes can be observed by tuning the applied voltage bias. The measurements were conducted in ultrahigh magnetic fields (up to 45 T) to obtain the full spectrum of the current oscillations.  相似文献   

20.
We have performed optically detected resonance (ODR) spectroscopy on modulation-doped GaAs/AlGaAs quantum wells of different widths in which lateral fluctuations of the well width were purposely introduced by growth interruption at the interfaces. These monolayer fluctuations form quantum dots for which confinement and Coulomb correlation energies are comparable. By monitoring resonant changes of the dot ensemble photoluminescence induced by far-infrared (FIR) radiation in a magnetic field, we have observed cyclotron resonance (CR) of free electrons in the widest wells, as well as internal transitions of mobile and localized charged excitons. The latter, which are forbidden by magnetic translational invariance, have previously not been observed. For the narrower wells the effects of non-parabolicity and carrier localization on the CR and CR-like transitions have to be included for a proper interpretation of the measurements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号