首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
After Xiao et al. [W.-K. Xiao, J. Ren, F. Qi, Z.W. Song, M.X. Zhu, H.F. Yang, H.Y. Jin, B.-H. Wang, Tao Zhou, Empirical study on clique-degree distribution of networks, Phys. Rev. E 76 (2007) 037102], in this article we present an investigation on so-called k-cliques, which are defined as complete subgraphs of k (k>1) nodes, in the cooperation-competition networks described by bipartite graphs. In the networks, the nodes named actors are taking part in events, organizations or activities, named acts. We mainly examine a property of a k-clique called “k-clique act degree”, q, defined as the number of acts, in which the k-clique takes part. Our analytic treatment on a cooperation-competition network evolution model demonstrates that the distribution of k-clique act degrees obeys Mandelbrot distribution, P(q)∝(q+α)γ. To validate the analytical model, we have further studied 13 different empirical cooperation-competition networks with the clique numbers k=2 and k=3. Empirical investigation results show an agreement with the analytic derivations. We propose a new “heterogeneity index”, H, to describe the heterogeneous degree distributions of k-clique and heuristically derive the correlation between H and α and γ. We argue that the cliques, which take part in the largest number of acts, are the most important subgraphs, which can provide a new criterion to distinguish important cliques in the real world networks.  相似文献   

2.
Monte Carlo simulation has been used to study the magnetic properties and hysteresis loops of a single nanocube, consisting of a ferromagnetic core of spin- surrounded by a ferromagnetic shell of spin-1 with antiferromagnetic interface coupling. We find a number of characteristic phenomena. In particular, the effects of the shell coupling and the interface coupling on both the compensation temperature and the magnetization profiles are investigated. The effects of the interface coupling on the hysteresis loops are also examined.  相似文献   

3.
P.A. Mello  M. Yépez  J.J. Sáenz 《Physica A》2007,386(2):603-610
We study the statistical properties of wave transport in a disordered waveguide. We first derive the properties of a “building block” (BB) of length δL starting from a potential model consisting of thin potential slices. We then find a diffusion equation—in the space of transfer matrices that describe our system—which governs the evolution with the length L of the disordered waveguide of the transport properties of interest. The latter depend only on the mean free paths and on no other property of the slice distribution. The universality that arises demonstrates the existence of a generalized central-limit theorem. We have developed a numerical simulation in which the universal statistical properties of the BB found analytically are first implemented numerically, and then the various BBs are combined to construct the full waveguide. The reported results thus obtained are in good agreement with microscopic calculations, for both bulk and surface disorder.  相似文献   

4.
We present a new information theoretic approach for network characterizations. It is developed to describe the general type of networks with n nodes and L directed and weighted links, i.e., it also works for the simpler undirected and unweighted networks. The new information theoretic measures for network characterizations are based on a transmitter-receiver analogy of effluxes and influxes. Based on these measures, we classify networks as either complex or non-complex and as either democracy or dictatorship networks. Directed networks, in particular, are furthermore classified as either information spreading and information collecting networks.The complexity classification is based on the information theoretic network complexity measure medium articulation (MA). It is proven that special networks with a medium number of links (Ln1.5) show the theoretical maximum complexity . A network is complex if its MA is larger than the average MA of appropriately randomized networks: MA>MAr. A network is of the democracy type if its redundancy R<Rr, otherwise it is a dictatorship network. In democracy networks all nodes are, on average, of similar importance, whereas in dictatorship networks some nodes play distinguished roles in network functioning. In other words, democracy networks are characterized by cycling of information (or mass, or energy), while in dictatorship networks there is a straight through-flow from sources to sinks. The classification of directed networks into information spreading and information collecting networks is based on the conditional entropies of the considered networks (H(A/B)=uncertainty of sender node if receiver node is known, H(B/A)=uncertainty of receiver node if sender node is known): if H(A/B)>H(B/A), it is an information collecting network, otherwise an information spreading network.Finally, different real networks (directed and undirected, weighted and unweighted) are classified according to our general scheme.  相似文献   

5.
B.J. West  P. Grigolini 《Physica A》2010,389(17):3580-1772
Herein we develop a psychophysical model of decision making based on the difference between objective clock time and the human brain’s perception of time. In this model the utility function is given by the survival probability, which is shown to be a generalized hyperbolic distribution. The parameters of the utility function are fit to intertemporal choice model experimental data and decision making is determined to be a 1/f-noise process.  相似文献   

6.
Colored tensor models generalize matrix models in higher dimensions. They admit a 1/N expansion dominated by spherical topologies and exhibit a critical behavior strongly reminiscent of matrix models. In this paper we generalize the colored tensor models to colored models with generic interaction, derive the Schwinger Dyson equations in the large N limit and analyze the associated algebra of constraints satisfied at leading order by the partition function. We show that the constraints form a Lie algebra (indexed by trees) yielding a generalization of the Virasoro algebra in arbitrary dimensions.  相似文献   

7.
In this paper, we propose a well targeted algorithm (GAS algorithm) for detecting communities in high clustered networks by presenting group action technology on community division. During the processing of this algorithm, the underlying community structure of a clustered network emerges simultaneously as the corresponding partition of orbits by the permutation groups acting on the node set are achieved. As the derivation of the orbit partition, an algebraic structure r-cycle can be considered as the origin of the community. To be a priori estimation for the community structure of the algorithm, the community separability is introduced to indicate whether a network has distinct community structure. By executing the algorithm on several typical networks and the LFR benchmark, it shows that this GAS algorithm can detect communities accurately and effectively in high clustered networks. Furthermore, we compare the GAS algorithm and the clique percolation algorithm on the LFR benchmark. It is shown that the GAS algorithm is more accurate at detecting non-overlapping communities in clustered networks. It is suggested that algebraic techniques can uncover fresh light on detecting communities in complex networks.  相似文献   

8.
Lapo Casetti 《Physica A》2007,384(2):318-334
The phenomenon of partial equivalence of statistical ensembles is illustrated by discussing two examples, the mean-field XY and the mean-field spherical model. The configurational parts of these systems exhibit partial equivalence of the microcanonical and the canonical ensemble. Furthermore, the configurational microcanonical entropy is a smooth function, whereas a nonanalytic point of the configurational free energy indicates the presence of a phase transition in the canonical ensemble. In the presence of a standard kinetic energy contribution, partial equivalence is removed and a nonanalyticity arises also microcanonically. Hence in contrast to the common belief, kinetic energy, even though a quadratic form in the momenta, has a nontrivial effect on the thermodynamic behaviour. As a by-product we present the microcanonical solution of the mean-field spherical model with kinetic energy for finite and infinite system sizes.  相似文献   

9.
We show how to apply a genetic algorithm to describe the homogeneous electron gas. For simplicity we consider just the 1D case. The pair correlation function so obtained is compared with those found by using variational Monte Carlo and quantum hypernetted chain calculations and reported for the first time in this paper.  相似文献   

10.
J.J. Wu  H.J. Sun  Z.Y. Gao 《Physica A》2007,386(1):407-413
In this paper, we study the cascading failure on weighted urban traffic equilibrium networks by introducing a more practical flow assignment mechanism. The whole process including edges overloading to node malfunctioning, dynamic spanning clustering and the phase transitions trigged with O-D flow evolving is simulated. It is found that there are three districts: slow, fast and stationary (collapse for scale-free networks) cascading failure districts. And different topologies have large effects on the ranges of these districts. Simulations also show that, although the latter can support larger traffic flow, homogeneous networks appear to be more robust against cascading failures than heterogeneous ones.  相似文献   

11.
We consider in this article a Cahn-Hilliard model in a bounded domain with non-permeable walls, characterized by dynamic-type boundary conditions. Dynamic boundary conditions for the Cahn-Hilliard system have recently been proposed by physicists in order to account for the interactions with the walls in confined systems and are obtained by writing that the total bulk mass is conserved and that there is a relaxation dynamics on the boundary. However, in the case of non-permeable walls, one should also expect some mass on the boundary. It thus seems more realistic to assume that the total mass, in the bulk and on the boundary, is conserved, which leads to boundary conditions of a different type. For the resulting mathematical model, we prove the existence and uniqueness of weak solutions and study their asymptotic behavior as time goes to infinity.  相似文献   

12.
The magnetoresistance (MR) effect is theoretically investigated in a periodic magnetically modulated nanostructure, which can be realized experimentally by depositing periodic parallel ferromagnetic strips on the top of a heterostructure. We find that there exists a significant conductance difference for electrons through the parallel (P) and antiparallel (AP) magnetization configurations, which results in a considerable magnetoresistance effect. We also find that the magnetoresistance effect depends not only on the temperature but also on the number of the periodic magnetic barriers.  相似文献   

13.
We investigated the phonon scattering effects on the transport properties of carbon nanotube devices with micron-order lengths at room temperature, using the time-dependent wave-packet approach based on the Kubo formula within a tight-binding approximation. We studied the scattering effects of both the longitudinal acoustic and the optical phonons on the transport properties. The conductance of semiconducting nanotubes is decreased by the acoustic phonon, instead of the optical phonon. Furthermore, we clarified how the electron mobilities of the devices are affected by the acoustic phonon.  相似文献   

14.
Neutron scattering results on single crystals shed light on the static and dynamic properties of the superconductor () PuCoGa5 and its isostructural but antiferromagnetic () homologue NpCoGa5. By polarized neutron diffraction the magnetization density in the paramagnetic state of both compounds has been inferred. The microscopic magnetization of NpCoGa5 is consistent with the orbital and spin components of a localized Np3+ magnetic moment. In the case of PuCoGa5 the microscopic magnetization is small, temperature-independent and cannot be described as a localized Pu3+ magnetic moment. For NpCoGa5 a dynamic magnetic signal has been observed by three-axis spectroscopy in the antiferromagnetically ordered state. The magnetic signal is strongest at the antiferromagnetic zone center and an energy transfer of about 5 meV. Magnetic fluctuations persist at this position in the paramagnetic state. The dynamic response is similar to the dynamic response observed in other actinide intermetallic compounds. This supports the possibility that magnetic fluctuations could also be present in the paramagnetic superconductor PuCoGa5.  相似文献   

15.
The distributions of returns for stocks are not well described by a normal probability density function (pdf). Student’s t-distributions, which have fat tails, are known to fit the distributions of the returns. We present pricing of European call or put options using a log Student’s t-distribution, which we call a Gosset approach in honour of W.S. Gosset, the author behind the nom de plume Student. The approach that we present can be used to price European options using other distributions and yields the Black-Scholes formula for returns described by a normal pdf.  相似文献   

16.
Modeling cascading failures in congested complex networks   总被引:1,自引:0,他引:1  
Cascading failures occur commonly in congested complex networks, where it may be expressed as the process of generation, diffusion and dissipation of congestion. Different from betweeness centrality, we introduce congestion effects to determine the load on the node. In terms of user equilibrium condition, congestion effects can be described by cost functions or link performance functions, which map link flows to travel times. By introducing conceptual “practical capacity” dynamics to cost functions, cascading failures are well discussed in terms of the degree of congestion in complex networks. Moreover, the efficiency dynamics of the network due to cascading failures is also investigated, and a transition phenomenon is uncovered independent of clustering effect.  相似文献   

17.
We present in this paper a new 3D half-moment model for radiative transfer in a gray medium, called the model, which uses maximum entropy closure. This model is a generalization to 3D of the 1D version recently proposed in (J. Comp. Phys. 180 (2002) 584). The direction space Ω is divided into two pieces, Ω+ and Ω-, in a dynamical way by the plane perpendicular to the total radiative flux, and the half moments are defined from these subspaces. The model closure and the integrations of the radiative transfer equation performed on the moving Ω± spaces are detailed. 1D planar results, which have motivated the extension of the model of (J. Comp. Phys. 180 (2002) 584) to multi-dimensions, are shown. These results are very good. The model is thereafter derived for 3D spherically symmetric geometry, where the correctness of the non-trivial border terms can be checked. Two 3D spherically symmetric problems are numerically solved in order to show the accuracy of the closure and the role of the border terms. Once again, compared to the solution obtained with a ray tracing solver, results are very good. From the 3D half-moment model, a new moment model, called , is derived for the particular case of a 3D hot and opaque source radiating into a cold medium, for applications such as simulations of stellar atmospheres and fires. Two-dimensional numerical results are presented and compared to those obtained solving the RTE and with other moment models. They demonstrate the very good accuracy of the model, its good convergence properties, and better prediction compared to all other existing moment models in its domain of applicability.  相似文献   

18.
We present ab initio calculation results for electron-phonon (e-ph) contribution to hole lifetime broadening of the surface state on Al(0 0 1). We show that e-ph coupling in this state is significantly stronger than in bulk Al at the Fermi level. It makes the e-ph decay channel very important in the formation of the hole decay in the surface state at . We also present the results for e-e lifetime broadening in a quantum-well state in 1 ML K/Cu(1 1 1). We show that this contribution is not negligible and is much larger than that in a surface state on Ag(1 1 1).  相似文献   

19.
L. Acedo  Abraham J. Arenas 《Physica A》2010,389(5):1151-1157
In this article, we generalize a recently proposed method to obtain an exact general solution for the classical Susceptible, Infected, Recovered and Susceptible (SIRS) epidemic mathematical model. This generalization is based upon the nonlinear coupling of two frequencies in an infinite modal series solution. It is shown that these series provide a nonstandard approach in order to obtain an accurate analytical solution for the classical SIRS epidemic model. Numerical results of the SIRS epidemic model for real and complex frequencies are included in order to test the validity and reliability of the method. This method could be applied to a wide class of models in physics, chemistry or engineering.  相似文献   

20.
We study theoretically the magnetic bipolar transistor, and compare its performance with common bipolar transistor. We present not only the simulation results for the characteristic curves, but also other relevant parameters related with its performance, such as: the current amplification factor, the open-loop gain, the hybrid parameters and the cutoff frequency. We noted that the spin-charge coupling introduces new phenomena that enrich the functionality characteristics of the magnetic bipolar transistor. Among other things, it has an adjustable band structure, which may be modified during the device operation; it exhibits the already known spin-voltaic effect. On the other hand, we observed that it is necessary a large g-factor to analyze the influence of the field B over the transistor. Nevertheless, we consider the magnetic bipolar transistor as a promising device for spintronic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号