首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
The singlet potential energy surface for the dissociation of benzene dication has been explored, and its three major dissociation channels have been studied: C6H6(2+) --> C3H3(+) + C3H3(+), C4H3(+) + C2H3(+), and C5H3(+) + CH3(+). The calculated energetics suggest that the products will be formed with considerable translational energy because of the Coulomb repulsion between the charged fragments. The calculated energy release in the three channels shows a qualitative agreement with the experimentally observed kinetic energy release. The formation of certain intermediates is found to be common to the three dissociation channels.  相似文献   

2.
Ionization and fragmentation of formic acid dimers (HCOOH)(2) and (DCOOD)(2) by irradiation of femtosecond laser pulses (100 fs, 800 nm, ~1 × 10(14) W/cm(2)) were investigated by time-of-flight (TOF) mass spectrometry. In the TOF spectra, we observed fragment ions (HCOOH)H(+), (HCOOH)HCOO(+), and H(3)O(+), which were produced via the dissociative ionization of (HCOOH)(2). In addition, we found that the TOF signals of COO(+), HCOO(+), and HCOOH(+) have small but clear side peaks, indicating fragmentation with large kinetic energy release caused by Coulomb explosion. On the basis of the momentum matching among pairs of the side peaks, a Coulomb explosion pathway of the dimer dication, (HCOOH)(2)(2+) → HCOOH(+) + HCOOH(+), was identified with the total kinetic energy release of 3.6 eV. Quantum chemical calculations for energies of (HCOOH)(2)(2+) were also performed, and the kinetic energy release of the metastable dication was estimated to be 3.40 eV, showing good agreement with the observation. COO(+) and HCOO(+) signals with kinetic energies of 1.4 eV were tentatively assigned to be fragment ions through Coulomb explosion occurring after the elimination of a hydrogen atom or molecule from (HCOOH)(2)(2+). The present observation demonstrated that the formic acid dimer could be doubly ionized prior to hydrogen bond breaking by intense femtosecond laser fields.  相似文献   

3.
Structures of the tert-pentyl cation (C(5)H(11)(+)) and its protonated dication (C(5)H(12)(2+), isopentane dication) were studied using ab initio methods at the MP2/cc-pVTZ level. Both C-C and C-H hyperconjugatively stabilized structures 1 and 2 , respectively, were found to be minima on the potential energy surface (PES) of the tert-pentyl cation. Structure 1 was computed to be about as stable as structure 2 (slightly more stable by 0.5 kcal mol(-1)). Inter-conversion between 1 and 2 through transition state 3 has a kinetic barrier of only 1.5 kcal mol(-1). The C-H protonated form (H(3)C)(2)C(+)CH(2)CH(4)(+)4 was found to be the global minimum for the protonated tert-pentyl dication. Charges and (13)C NMR chemical shifts of the dication 4 were calculated and compared to those of monocation 1 to study the effect of the additional charge in the dication.  相似文献   

4.
Charge stripping (CS) of the molecular ion of toluene, C(7)H(8) (+)-->C(7)H(8) (2+)+e, is often used as a reference for the determination of second ionization energies in energy-resolved CS experiments. For calibration of the kinetic energy scale, a value of IE(C(7)H(8) (+))=(15.7+/-0.2) eV derived from the appearance energy of the toluene dication upon electron ionization has been accepted generally. Triggered by some recent discrepancies between CS measurements on the one hand and different experimental methods as well as theoretical predictions on the other, we have reinvestigated the photon-induced double ionization of toluene using synchrotron radiation. These photoionization measurements yield phenomenological appearance energies of AE(C(7)H(8) (+))=(8.81+/-0.03) eV for the monocation and AE(C(7)H(8) (2+))=(23.81+/-0.06) eV for the dication. The former is in good agreement with a much more precise spectroscopic value, IE(C(7)H(8))=(8.8276+/-0.0006) eV. Explicit consideration of the Franck-Condon envelopes associated with photoionization to the dication in conjunction with the application of the Wannier law leads to an adiabatic ionization energy IE(a)(C(7)H(8) (+))=(14.8+/-0.1) eV, which is as much as 0.9 eV lower than the previous value derived from electron ionization. Because in many previous CS measurements the transition C(7)H(8) (+)-->C(7)H(8) (2+)+e was used as a reference, the energetics of several gaseous dications might need some readjustment.  相似文献   

5.
The two-body dissociation reactions of the dication, C(2)H(2)(2+), produced by 39.0 eV double photoionization of acetylene molecules, have been studied by coupling photoelectron-photoion-photoion coincidence and ion imaging techniques. The results provide the kinetic energy and angular distributions of product ions. The analysis of the results indicates that the dissociation leading to C(2)H(+)+H(+) products occurs through a metastable dication with a lifetime of 108±22 ns, and a kinetic energy release (KER) distribution exhibiting a maximum at ~4.3 eV with a full width at half maximum (FWHM) of about 60%. The reaction leading to CH(2)(+)+C(+) occurs in a time shorter than the typical rotational period of the acetylene molecules (of the order of 10(-12) s). The KER distribution of product ions for this reaction, exhibits a maximum at ~4.5 eV with a FWHM of about 28%. The symmetric dissociation, leading to CH(+)+CH(+), exhibits a KER distribution with a maximum at ~5.2 eV with a FWHM of 44%. For the first two reactions the angular distributions of ion products also indicate that the double photoionization of acetylene occurs when the neutral molecule is mainly oriented perpendicularly to the light polarization vector.  相似文献   

6.
The fragmentation of the doubly-charged carbon dioxide molecule is studied after photoexcitation to the C 1s(1)2π(u) and O 1s(1)2π(u) states using a multicoincidence ion-imaging technique. The bent component of the Renner-Teller split states populated in the 1s→ π* resonant excitation at both the carbon and oxygen 1s ionization edges opens pathways to potential surfaces in highly bent geometries in the dication. Evidence for a complete deformation of the molecule is found in the coincident detection of C(+) and O(2)(+) ions. The distinct alignment of this fragmentation channel indicates rapid deformation and subsequent fragmentation. Investigation of the complete atomization dynamics in the dication leading to asymmetric charge separation shows that the primary dissociation mechanisms, sequential, concerted, and asynchronous concerted, are correlated to specific fragment kinetic energies. The study shows that the bond angle in fragmentation can extend below 20°.  相似文献   

7.
Delayed asymmetric Coulomb fission in size-selected molecular dication clusters has been recorded for the first time. Observations on (NH(3))(n)(2+) clusters show that fragmentation accompanied by charge separation can occur on a microsecond time scale, exhibits considerable asymmetry, and involves a kinetic energy release of ~0.9 eV. The fission process has been modeled by representing the fragments as charged dielectric spheres and the calculated maximum in the electrostatic interaction energy between the fragments gives a good account of the measured kinetic energy release. A simple kinetic model shows that instrumental factors may contribute to the observation of asymmetric fragmentation.  相似文献   

8.
We investigated the dissociative ionization of formaldehyde (CH(2)O) and ethene (C(2)H(4)) produced from photolysis of 1,3-trimethylene oxide at 193 nm using a molecular-beam apparatus and vacuum-ultraviolet radiation from an undulator for direct ionization. The CH(2)O (C(2)H(4)) product suffers from severe dissociative ionization to HCO(+) (C(2)H(3) (+) and C(2)H(2) (+)) even though photoionization energy is as small as 9.8 eV. Branching ratios of fragmentation of CH(2)O and C(2)H(4) following ionization are revealed as a function of kinetic energy of products using ionizing photons from 9.8 to 14.8 eV. Except several exceptions, branching ratios of daughter ions increase with increasing photon energy but decrease with increasing kinetic energy. The title reaction produces CH(2)O and C(2)H(4) mostly on electronic ground states but a few likely on triplet states; C(2)H(4) (a(3)B(1u)) seems to have a yield greater than CH(2)O (a(3)A(2)). The distinct features observed at small kinetic energies of daughter ions are attributed to dissociative ionization of photoproducts CH(2)O (a(3)A(2)) and C(2)H(4) (a(3)B(1u)). The observation of triplet products indicates that intersystem crossing occurs prior to fragmentation of 1,3-trimethylene oxide.  相似文献   

9.
The angular anisotropy for selected dissociation channels is measured at resonantly excited states of Σ and Π symmetries at the C and O K-shell ionization edges of carbonyl sulfide. While the kinetic energy released in the reaction is mainly independent of the excitation energy, the angular anisotropy and momentum correlation clearly show deformation of the OCS molecule in the C 1s(-1)π(?1) state. The discovery of a two-body fragmentation channel SO(+)/C(+) with a well defined angular anisotropy indicates the rapid formation of the CSO isomeric species.  相似文献   

10.
Kinetic energy release distributions (KERDs) for the benzene ion fragmenting into C 4H 4 (+) and C 2H 2 have been recorded by double-focusing mass spectrometry in the metastable energy window and by a retarding field experiment up to an energy of 5 eV above the fragmentation threshold. They are compared with those resulting from the HCN loss reaction from the pyridine ion. Both reactions display a similar variation of the kinetic energy release as a function of the internal energy: the average release is smaller than statistically expected, with a further restriction of the phase-space sampling for the C 5H 5N (+) dissociation. Ab initio calculations of the potential-energy profile have been carried out. They reveal a complicated reaction mechanism, the last step of which consists in the dissociation of a weakly bound ion-quadrupole or ion-dipole complex. The KERDs have been analyzed by the maximum entropy method. The fraction of phase space effectively sampled by the pair of fragments has been determined and is similar for both dissociations. Both reactions are constrained by the square root of the released translational energy, epsilon (1/2). This indicates that in the latter stage of the dissociation process, the reaction coordinate is adiabatically decoupled from the bath of the bound degrees of freedom. For the C 6H 6 (+) fragmentation, the analysis of the experimental results strongly suggests that, just as for a spherically symmetric interaction potential, the translational motion is confined to a plane. For the dissociation of the pyridine ion, the main dynamical constraint is also a restriction to a two-dimensional subspace. This dimensionality reduction of the translational phase space is due to the fact that the Hamiltonian of both weakly bound complexes contains a cyclic coordinate.  相似文献   

11.
We have measured fragmentation cross sections of protonated water cluster cations (H(2)O)(n=30-50)H(+) by collision with water molecules. The clusters have well-defined sizes and internal energies. The collision energy has been varied from 0.5 to 300 eV. We also performed the same measurements on deuterated water clusters (D(2)O)(n=5-45)D(+) colliding with deuterated water molecules. The main fragmentation channel is shown to be a sequential thermal evaporation of single molecules following an initial transfer of relative kinetic energy into internal energy of the cluster. Unexpectedly, that initial transfer is very low on average, of the order of 1% of collision energy. We evaluate that for direct collisions (i.e., within the hard sphere radius), the probability for observing no fragmentation at all is more than 35%, independently of cluster size and collision energy, over our range of study. Such an effect is well known at higher energies, where it is attributed to electronic effects, but has been reported only in a theoretical study of the collision of helium atoms with sodium clusters in that energy range, where only vibrational excitation occurs.  相似文献   

12.
We have studied soft X-ray photoabsorption in the doubly deprotonated gas-phase oligonucleotide [dTGGGGT–2H]2−. The dominating decay mechanism of the X-ray induced inner shell vacancy was found to be Auger decay with detachment of at least three electrons, leading to charge reversal of the anionic precursor and the formation of positively charged photofragment ions. The same process is observed in heavy ion (12 MeV C4+) collisions with [dTGGGGT–2H]2− where inner shell vacancies are generated as well, but with smaller probability. Auger decay of a single K-vacancy in DNA, followed by detachment of three or more low energy electrons instead of a single high energy electron has profound implications for DNA damage and damage modelling. The production of three low kinetic energy electrons with short mean free path instead of one high kinetic energy electron with long mean free path implies that electron-induced DNA damage will be much more localized around the initial K-shell vacancy. The fragmentation channels, triggered by triple electron detachment Auger decay are predominantly related to protonated guanine base loss and even loss of protonated guanine dimers is tentatively observed. The fragmentation is not a consequence of the initial K-shell vacancy but purely due to multiple detachment of valence electrons, as a very similar positive ion fragmentation pattern is observed in femtosecond laser-induced dissociation experiments.

A K-shell vacancy in DNA that is induced by a (therapeutically relevant) soft X-ray of MeV carbon ion, decays by Auger processes accompanied by emission of at least 3 low energy electrons.  相似文献   

13.
Fragmentation mechanisms of ionized butylbenzene to give m/z 91 and m/z 92 fragment ions have been examined at the G3B3 and G3MP2B3 levels of theory. It is shown that the energetically favored pathways lead to tropylium, Tr(+), and methylene-2,4-cyclohexadiene, MCD(?+), ions. Formation of m/z 91 benzyl ions, Bz(+), by a simple bond fission (SBF) process, needs about 30 kJ/mol more energy than Tr(+). Possible formation of C(7)H(8)(?+) ions of structures different from the retro-ene rearrangement (RER) product, MCD(?+), has been also considered. Comparison with experimental data of this "thermometer" system is done through a kinetic modeling using Rice-Ramsperger-Kassel-Marcus (RRKM) and orbiting transition state (OTS) rate constant calculations on the G3MP2B3 0 K energy surface. The results agree with previous experimental observation if (i) the competitive formation of Tr(+) and Bz(+) is taken into account in the m/z 91 pathway, and (ii) the stepwise character of the RER fragmentation is introduced in the m/z 92 fragmentation route.  相似文献   

14.
The formation and fragmentation of the molecular dication C(7)H(8)(2+) from cycloheptatriene (CHT) and the bimolecular reactivities of C(7)H(8)(2+) and C(7)H(6)(2+) are studied using multipole-based tandem mass spectrometers with either electron ionization or photoionization using synchrotron radiation. From the photoionization studies, an apparent double-ionization energy of CHT of (22.67 ± 0.05) eV is derived, and the appearance energy of the most abundant fragment ion C(7)H(6)(2+), formed via H(2) elimination, is determined as (23.62 ± 0.07) eV. Analysis of both the experimental data as well as results of theoretical calculations strongly indicate, however, that an adiabatic transition to the dication state is not possible upon photoionization of neutral CHT and the experimental value is just considered as an upper bound. Instead, an analysis via two different Born-Haber cycles suggests (2)IE(CHT) = (21.6 ± 0.2) eV. Further, the bimolecular reactivities of the C(7)H(n)(2+) dications (n = 6, 8), generated via double ionization of CHT as a precursor, with xenon as well as nitrogen lead, inter alia, to the formation of the organo-xenon dication C(7)H(6)Xe(2+) and the corresponding nitrogen adduct C(7)H(6)N(2)(2+).  相似文献   

15.
In the course of a liquid secondary ion mass spectrometric (SIMS) investigation on a bisquaternary ammonium antimicrobial agent, decamethoxinum, unusual pathways of fragmentation of the organic dication M2+ of this bisquaternary salt, with preservation of the doubly charged state of the fragments, were observed. To reveal the structural and electronic parameters of decamethoxinum, which are responsible for the stabilization of its organic dication in the gas phase, a comprehensive SIMS study using metastable decay, collision-induced dissociation and kinetic energy release techniques complemented by ab initio quantum chemical calculations was performed. Pathways of fragmentation of two main precursors originating from decamethoxinum-organic dication M2+ and its cluster with a Cl- counterion [M.Cl]+-and a number of their primary fragments were established and systematized. Differences in the pathways of fragmentation of M2+ and [M.Cl]+ were revealed: the main directions of [M.Cl]+ decay involve dequaternization similar to thermal degradation of this compound, while in M2+ fragmentation via loss of one and two terminal radicals with preservation of the doubly charged state of the fragments dominates over charge separation processes. It was shown that pairing of the dication with a Cl- anion does not preserve the complex from fragmentation via separation of two positively charged centers or neutralization (dequaternization) of one such center. At the same time the low abundance of M2+ in the SIMS spectra is to a larger extent controlled by a probability of M2+ association with an anion than by the decay of the dication per se.Quantum chemical calculations of the structural and electronic parameters of the decamethoxinum dication have revealed at least three features which can provide stabilization of the doubly charged state. Firstly, in the most energetically favorable stretch conformation the distance between the quaternary nitrogens (rN1-N2=1.39 nm) is relatively large. Secondly, an intramolecular solvation of quaternary groups by carbonyl oxygens of the adjacent groups of the dication occurs, which contribute to structural stabilization. Thirdly, an important feature of the electronic structure of the dication is the presence of a partial negative charge on the nitrogen atoms and smearing of a positive charge mainly over the hydrogens of alkyl groups attached to the quaternary nitrogens, which reduces the net repulsion between the quaternary groups. The possible influence of charge smearing on the kinetic energy released on the dication fragmentation is discussed.  相似文献   

16.
Quantum chemical calculations of the geometric structure, vertical excitation energies, and ionization potentials for the isomeric pair of 1,3- and 1,4-cyclohexadienes and their mono- and dications have been performed employing a variety of theoretical methods and basis sets. The computed ionization potentials and electronic excitation energies are used to evaluate the range of internal energies available for fragmentation of the cations following multiphoton resonance ionization of the cyclohexadienes in intense laser field. The conditions governing the competition between multiple ionization and decomposition of the ions are also discussed. Calculations of stationary points on the potential energy surfaces for various fragmentation channels and relative product yields at different available internal energies are then utilized to analyze the trends in branching ratios of major dissociation products of the 1,4-cyclohexadiene(2+) dication, which include C(3)H(3)(+) + C(3)H(5)(+), C(2)H(3)(+) + C(4)H(5)(+), and C(4)H(3)(+) + C(2)H(5)(+).  相似文献   

17.
To get further insight into the CH2BrCl site-selective fragmentation previously observed upon inner-shell ionization, we have performed high-resolution Br 3d and Cl 2p Auger and spin-orbit resolved Br 3d Auger spectra, and studied the dissociation properties of the CH2BrCl2+ dication formed at threshold by means of threshold electron pair-ion coincidence measurements. The key point is that the origin of site-specific bond breaking is found in the Auger decay itself, as it preferentially populates selected dication states. Whereas the predominance of the C-Br bond breaking is observed in both threshold and inner-shell studies, no signature of selective C-Cl rupture is reported for the dication formed at threshold.  相似文献   

18.
We report on theoretical Auger electron kinetic energy distribution originated from sequential two-step Auger decays of molecular double core-hole (DCH) state, using CH(4), NH(3), and H(2)CO molecules as representative examples. For CH(4) and NH(3) molecules, the DCH state has an empty 1s inner-shell orbital and its Auger spectrum has two well-separated components. One is originated from the 1st Auger transition from the DCH state to the triply ionized states with one core hole and two valence holes (CVV states) and the other is originated from the 2nd Auger transition from the CVV states to quadruply valence ionized (VVVV) states. Our result on the NH(3) Auger spectrum is consistent with the experimental spectrum of the DCH Auger decay observed recently [J. H. D. Eland, M. Tashiro, P. Linusson, M. Ehara, K. Ueda, and R. Feifel, Phys. Rev. Lett. 105, 213005 (2010)]. In contrast to CH(4) and NH(3) molecules, H(2)CO has four different DCH states with C1s(-2), O1s(-2), and C1s(-1)O1s(-1) (singlet and triplet) configurations, and its Auger spectrum has more complicated structure compared to the Auger spectra of CH(4) and NH(3) molecules. In the H(2)CO Auger spectra, the C1s(-1)O1s(-1) DCH → CVV Auger spectrum and the CVV → VVVV Auger spectrum overlap each other, which suggests that isolation of these Auger components may be difficult in experiment. The C1s(-2) and O1s(-2) DCH → CVV Auger components are separated from the other components in the H(2)CO Auger spectra and can be observed in experiment. Two-dimensional Auger spectrum, representing a probability of finding two Auger electrons at specific pair of energies, may be obtained by four-electron coincidence detection technique in experiment. Our calculation shows that this two-dimensional spectrum is useful in understanding contributions of CVV and VVVV states to the Auger decay of molecular DCH states.  相似文献   

19.
Irradiation of isolated water molecules by few-cycle pulses of intense infrared laser light can give rise to ultrafast rearrangement resulting in formation of the H(2) (+) ion. Such unimolecular reactions occur on the potential energy surface of the H(2)O(2+) dication that is accessed when peak laser intensities in the 10(15) W cm(-2) range and pulse durations as short as 9-10 fs are used; ion yields of ~1.5% relative to the H(2)O(+) ion are measured. We also study such reactions by means of time-dependent wavepacket dynamics on an ab initio potential energy surface of the dication and show that a proton, generated from O-H bond rupture, migrates towards the H-atom, and forms vibrationally excited H(2)(+) in a well-defined spatial zone.  相似文献   

20.
Relative partial ionization cross sections and precursor specific relative partial ionization cross sections for fragment ions formed by electron ionization of C2H2 have been measured using time-of-flight mass spectrometry coupled with a 2D ion-ion coincidence technique. We report data for the formation of H+, H+2, C2+, C+/C2+ 2, CH+/C2H+2, CH+2, C+2, and C2H+ relative to the formation of C2H+2, as a function of ionizing electron energy from 30-200 eV. While excellent agreement is found between our data and one set of previously published absolute partial ionization cross sections, some discrepancies exist between the results presented here and two other recent determinations of these absolute partial ionization cross sections. We attribute these differences to the loss of some translationally energetic fragment ions in these earlier studies. Our relative precursor-specific partial ionization cross sections enable us, for the first time, to quantify the contribution to the yield of each fragment ion from single, double, and triple ionization. Analysis shows that at 50 eV double ionization contributes 2% to the total ion yield, increasing to over 10% at an ionizing energy of 100 eV. From our ion-ion coincidence data, we have derived branching ratios for charge separating dissociations of the acetylene dication. Comparison of our data to recent ab initio/RRKM calculations suggest that close to the double ionization potential C2H2+2 dissociates predominantly on the ground triplet potential energy surface (3Sigma*g) with a much smaller contribution from dissociation via the lowest singlet potential energy surface (1Delta g). Measurements of the kinetic energy released in the fragmentation reactions of C2H2+2 have been used to obtain precursor state energies for the formation of product ion pairs, and are shown to be in good agreement with available experimental data and with theory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号