首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Effects of the traps are investigated on the dynamics of two coupled Bose-Einstein condensates, and the atom population transfer between the two condensates is discussed. It is found that the traps and the initial condition determine the switching and self-trapping effects on the atom population imbalance. There are the critical potential amplitude and the critical potential width, by which the oscillation manner of the population transferring ratio can be analyzed as time changes.  相似文献   

2.
We investigate theoretically the phase diagram of a spin-orbit coupled Bose gas in two-dimensional harmonic traps. We show that at strong spin-orbit coupling the single-particle spectrum decomposes into different manifolds separated by ?ω{⊥}, where ω{⊥} is the trapping frequency. For a weakly interacting gas, quantum states with Skyrmion lattice patterns emerge spontaneously and preserve either parity symmetry or combined parity-time-reversal symmetry. These phases can be readily observed in a spin-orbit coupled gas of ^{87}Rb atoms in a highly oblate trap.  相似文献   

3.
Spin-orbit coupling (SOC), the interaction between the spin and momentum of a quantum particle, is crucial for many important condensed matter phenomena. The recent experimental realization of SOC in neutral bosonic cold atoms provides a new and ideal platform for investigating spin-orbit coupled quantum many-body physics. In this Letter, we derive a generic Gross-Pitaevskii equation as the starting point for the study of many-body dynamics in spin-orbit coupled Bose-Einstein condensates. We show that different laser setups for realizing the same SOC may lead to different mean-field dynamics. Various ground state phases (stripe, phase separation, etc.) of the condensate are found in different parameter regions. A new oscillation period induced by the SOC, similar to the Zitterbewegung oscillation, is found in the center-of-mass motion of the condensate.  相似文献   

4.
The dynamics of a Bose-Einstein condensate trapped in a periodic potential is governed by a discrete nonlinear equation. The interplay/competition between discreteness (introduced by the lattice) and nonlinearity (due to the interatomic interaction) manifests itself on nontrivial dynamical regimes which disappear in the continuum (translationally invariant) limit, and have been recently observed experimentally. We review some recent efforts on this highly interdisciplinary field, with the goal of stimulating interexchanges among the communities of condensed matter, quantum optics, and nonlinear physics.  相似文献   

5.
A Bose-Einstein condensate in an external potential consisting of a superposition of a harmonic and a random potential is considered theoretically. From a semiquantitative analysis we find the size, shape, and excitation energy as a function of the disorder strength. For positive scattering length and sufficiently strong disorder the condensate decays into fragments each of the size of the Larkin length L. This state is stable over a large range of particle numbers. The frequency of the breathing mode scales as 1/L(2). For negative scattering length a condensate of size L may exist as a metastable state. These findings are generalized to anisotropic traps.  相似文献   

6.
Here we report on the experimental investigation of thermally induced fluctuations of the relative phase between two Bose-Einstein condensates which are coupled via tunneling. The experimental control over the coupling strength and the temperature of the thermal background allows for the quantitative analysis of the phase fluctuations. Furthermore, we demonstrate the application of these measurements for thermometry in a regime where standard methods fail. With this we confirm that the heat capacity of an ideal Bose gas deviates from that of a classical gas as predicted by the third law of thermodynamics.  相似文献   

7.
We demonstrate, both from a theoretical and an experimental point of view, the possibility of realizing a weak coupling between two Bose-Einstein condensates trapped in different Zeeman states. The weak coupling drives macroscopic quantum oscillations between the condensate populations and the observed current-phase dynamics is described by generalized Josephson equations. In order to highlight the superfluid nature of the oscillations, we investigate the response of a 87Rb non-condensate (thermal) gas in the same conditions, showing that the thermal oscillations damp more quickly than those of the condensate. Received 2 May 2002 / Received in final form 19 November 2002 Published online 6 March 2003 RID="a" ID="a"e-mail: smerzi@sissa.it  相似文献   

8.
We investigate minimal energy solutions with vortices for an interacting Bose-Einstein condensate in a rotating trap. The atoms are strongly confined along the axis of rotation z, leading to an effective 2D situation in the x-y plane. We first use a simple numerical algorithm converging to local minima of energy. Inspired by the numerical results we present a variational ansatz in the regime where the interaction energy per particle is stronger than the quantum of vibration in the harmonic trap in the x-y plane, the so-called Thomas-Fermi regime. This ansatz allows an easy calculation of the energy of the vortices as function of the rotation frequency of the trap; it gives a physical understanding of the stabilisation of vortices by rotation of the trap and of the spatial arrangement of vortex cores. We also present analytical results concerning the possibility of detecting vortices by a time-of-flight measurement or by interference effects. In the final section we give numerical results for a 3D configuration. Received 16 December 1998 and Received in final form 18 March 1999  相似文献   

9.
文林  梁毅  周晶  余鹏  夏雷  牛连斌  张晓斐 《物理学报》2019,68(8):80301-080301
利用变分近似及基于Gross-Pitaevskii方程的直接数值模拟方法,研究了自旋-轨道耦合玻色-爱因斯坦凝聚体中线性塞曼劈裂对亮孤子动力学的影响,发现线性塞曼劈裂将导致体系具有两个携带有限动量的静态孤子,以及它们在微扰下存在一个零能的Goldstone激发模和一个频率与线性塞曼劈裂有关的谐振激发模.同时给出了描述孤子运动的质心坐标表达式,发现线性塞曼劈裂明显影响孤子的运动速度和振荡周期.  相似文献   

10.
An effective spin-orbit coupling can be generated in a cold atom system by engineering atom-light interactions. In this Letter we study spin-1/2 and spin-1 Bose-Einstein condensates with Rashba spin-orbit coupling, and find that the condensate wave function will develop nontrivial structures. From numerical simulation we have identified two different phases. In one phase the ground state is a single plane wave, and often we find the system splits into domains and an array of vortices plays the role of a domain wall. In this phase, time-reversal symmetry is broken. In the other phase the condensate wave function is a standing wave, and it forms a spin stripe. The transition between them is driven by interactions between bosons. We also provide an analytical understanding of these results and determine the transition point between the two phases.  相似文献   

11.
Qiongtao Xie 《Physics letters. A》2009,373(17):1501-1505
We investigate the effect of an external periodic driving field on the self-trapping of two weakly coupled Bose-Einstein condensates with dissipation. It is shown that the macroscopic self-trapping can be stabilized against dissipation by a high frequency periodic driving field. The parameter ranges for stabilizing self-trapping are found analytically and confirmed numerically.  相似文献   

12.
We find that in very elongated 3D trapped Bose gases, even at temperatures far below the BEC transition temperature T(c), the equilibrium state will be a 3D condensate with fluctuating phase (quasicondensate). At sufficiently low temperatures the phase fluctuations are suppressed and the quasicondensate turns into a true condensate. The presence of the phase fluctuations allows for extending thermometry of Bose-condensed gases well below those established in current experiments.  相似文献   

13.
We present a scheme to prepare generalized coherent states in a system with two species of Bose-Einstein condensates. First, within the two-mode approximation, we demonstrate that a Schrödinger cat-like state can be dynamically generated and, by controlling the Josephson-like coupling strength, the number of coherent states in the superposition can be varied. Later, we analyze numerically the dynamics of the whole system when interspecies collisions are inhibited. Variables such as fractional population, Mandel parameter and variances of annihilation and number operators are used to show that the evolved state is entangled and exhibits sub-Poisson statistics.  相似文献   

14.
We present a controlling potential method for solving the three-dimensional Gross-Pitaevskii equation (GPE), which governs the nonlinear dynamics of the Bose-Einstein condensates (BECs) in an inhomogeneous potential trap. Our method allows one to construct ground and excited matter wave states whose longitudinal profiles can have bright solitons. This method provides the confining potential that filters and controls localized BECs. Moreover, it is predicted that, while the BEC longitudinal soliton profile is controlled and kept unchanged, the transverse profile may exhibit oscillatory breathers (the unmatched case) or move as a rigid body in the form of either coherent states (performing the Lissajous figures) or a Schrödinger cat state (matched case).  相似文献   

15.
We consider a 3D dilute Bose-Einstein condensate at thermal equilibrium in a rotating harmonic trap. The condensate wavefunction is a local minimum of the Gross-Pitaevskii energy functional and we determine it numerically with the very efficient conjugate gradient method. For single vortex configurations in a cigar-shaped harmonic trap we find that the vortex line is bent, in agreement with the numerical prediction of Garcia-Ripoll and Perez-Garcia [Phys. Rev. A 63, 041603 (2001)]. We derive a simple energy functional for the vortex line in a cigar-shaped condensate which allows to understand physically why the vortex line bends and to predict analytically the minimal rotation frequency required to stabilize the bent vortex line. This analytical prediction is in excellent agreement with the numerical results. It also allows to find in a simple way a saddle point of the energy, where the vortex line is in a stationary configuration in the rotating frame but not a local minimum of energy. Finally we investigate numerically the effect of thermal fluctuations on the vortex line for a condensate with a straight vortex: we can predict what happens in a single realization of the experiment by a Monte Carlo sampling of an atomic field quasi-distribution function of the density operator of the gas at thermal equilibrium in the Bogoliubov approximation. Received 28 March 2002 / Received in final form 13 September 2002 Published online 21 January 2003 RID="a" ID="a"e-mail: yvan.castin@lkb.ens.fr  相似文献   

16.
The visibility of the density interference pattern of two Bose-Einstein condensates, which are produced in traps and overlap after the trapping potential is switched off, is investigated. Coherent wave packets are used to describe the order parameter in a second-quantization formalism. This results in a decrease of the visibility of the interference fringes with increasing time delay between the formation of the condensates and the observation of interference. In the two limiting cases of ideal and very dense gases the correlation time increases, τ→∞, and the result is identical to that obtained using an approach based on the Gross-Pitaevskii equation. Under the conditions of the experiment performed by M. R. Andrews, C. G. Townsend, H. J. Miesner et al., Science 275, 6367 (1997), the computed correlation time τ≈0.2 s is much longer than the confinement time of the condensate, and it is possible to observe the predicted decrease of visibility of the interference fringes of the density of the atoms. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 7, 491–496 (10 April 1999)  相似文献   

17.
18.
The Fermi-Pasta-Ulam (FPU) model, which was proposed 50 years ago to examine thermalization in nonmetallic solids and develop "experimental" techniques for studying nonlinear problems, continues to yield a wealth of results in the theory and applications of nonlinear Hamiltonian systems with many degrees of freedom. Inspired by the studies of this seminal model, solitary-wave dynamics in lattice dynamical systems have proven vitally important in a diverse range of physical problems-including energy relaxation in solids, denaturation of the DNA double strand, self-trapping of light in arrays of optical waveguides, and Bose-Einstein condensates (BECs) in optical lattices. BECs, in particular, due to their widely ranging and easily manipulated dynamical apparatuses-with one to three spatial dimensions, positive-to-negative tuning of the nonlinearity, one to multiple components, and numerous experimentally accessible external trapping potentials-provide one of the most fertile grounds for the analysis of solitary waves and their interactions. In this paper, we review recent research on BECs in the presence of deep periodic potentials, which can be reduced to nonlinear chains in appropriate circumstances. These reductions, in turn, exhibit many of the remarkable nonlinear structures (including solitons, intrinsic localized modes, and vortices) that lie at the heart of the nonlinear science research seeded by the FPU paradigm.  相似文献   

19.
We extend our previous work of splitting a single-species Bose-Einstein condensate in two translating traps to a two-species condensate. Different from the single species case where interaction is considered as a damping mechanism to the motion of the condensate, we find that, in the two species case, the damping effect is much less obvious and the splitting dynamics exhibit different behaviors. The distribution of each component are not damped towards 50:50 for large interaction strength in the two wells. Our conclusions are supported by investigating the dependence of the splitting on both the translation speed and the interspecies scattering length.  相似文献   

20.
We observe interlaced square vortex lattices in rotating dilute-gas spinor Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a one-component BEC in an internal atomic state |1, we coherently transfer a fraction of the superfluid to a different state |2. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state of offset square lattices involves an intriguing interplay of phase-separation and -mixing dynamics, both macroscopically and on the length scale of the vortex cores, and a stage of vortex turbulence. The stability of the square structure is proved by its response to applied shear perturbations. An interference technique shows the spatial offset between the two vortex lattices. Vortex cores in either component are filled by fluid of the other component, such that the spin-1/2 order parameter forms a Skyrmion lattice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号