首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Spectrophotometric monitoring of 4-nitrophenol (4-NP) reduction by sodium borohydride (NaBH4) using gold nanoparticles (GNPs) as a catalyst has been extensively studied, but the stability of GNPs in terms of change in the surface plasmon resonance (SPR) at different temperatures has not been explored. In the present investigation, our aim was to evaluate the SPR stability of GNPs as a catalyst during the reduction of 4-NP at different elevated temperatures (i.e. 30–60 °C) and sodium borohydride concentrations. Sensitivity of this degradation process toward concentration of GNPs at a range of temperatures is also evaluated. The spectrophotometric results reveal that up to 45 °C, 12 ± 1.5 nm catalyst has a consistent optical density (OD) during the entire 4-NP reduction process, which is related to the surface integrity of catalyst atoms. As the temperature approached 50 °C, the OD gradually decreased and showed a blue shift as the reaction proceeded, which could be related to a decrease in particle size or surface dissolution of gold atoms. The present study may find application in the design of catalysts for the reduction of organic pollutants in industrial wastewater at a range of temperatures.  相似文献   

2.
A simple, green method is described for the synthesis of Gold (Au) and Silver (Ag) nanoparticles (NPs) from the stem extract of Breynia rhamnoides. Unlike other biological methods for NP synthesis, the uniqueness of our method lies in its fast synthesis rates (~7 min for AuNPs) and the ability to tune the nanoparticle size (and subsequently their catalytic activity) via the extract concentration used in the experiment. The phenolic glycosides and reducing sugars present in the extract are largely responsible for the rapid reduction rates of Au(3+) ions to AuNPs. Efficient reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of AuNPs (or AgNPs) and NaBH(4) was observed and was found to depend upon the nanoparticle size or the stem extract concentration used for synthesis.  相似文献   

3.
The layer-by-layer assembly of polyethyleneimine and carbon nanotubes is carried out through the electrostatic interactions on colloidal polystyrene templates. The successful spherical growth of polyethyleneimine/carbon nanotube multilayers could be investigated by SEM. The subsequent in situ preparation and deposition of gold nanoparticles on the core–shell composites could yield novel microsphere complexes, which are characterized by SEM, TEM, EDX and XRD. The functional hierarchical microspheres with gold nanoparticles exhibit good catalytic activity in the reaction of reducing 4-nitrophenol to 4-aminophenol.  相似文献   

4.
A simple and effective method for preparing a non-metallic ion-doped nickel-supported catalyst is reported. Using economical and recyclable fibre raw materials as carriers, nickel-supported catalysts were prepared by adsorption and reduction at room temperature. The nanoparticles dispersed and anchored on a rational support, efficiently inhibiting their aggregation and thus enhancing the catalytic activity. For the model catalytic hydrogenation of 4-nitrophenol by NaBH4, the N-B-NiP/steam-exploded poplar (SEP) and N-B-Ni5Fe5P/SEP catalysts exhibited much better catalytic performances than the other recently reported catalysts in terms of the catalytic activity (the reaction was completed within 10 min for both aforementioned catalysts), reaction rate constant (0.19 and 0.344 min?1, respectively) and the activity factor K (19 and 34.4 min?1·g?1, respectively). The catalysts showed activities for electrocatalytic hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) under ambient conditions. In general, the reported preparation method of nickel-supported catalysts is convenient, economical and environment-friendly, and is agreement with many green chemistry and sustainable development principles; further, it employs widely available starting materials.  相似文献   

5.
Polymeric Schiff base ligands were synthesized using 2-hydroxybenzaldehyde (L2), 4-hydroxy-3-methoxybenzaldehyde (L4), and 5-aminoisophthalic acid. The nanostructured complexes were then synthesized using Ni2+, Cu2+, and Mn3+. The ligands and complexes thus synthesized were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis (TGA), and field-emission scanning electron microscopy. The thermal stability of the complexes was confirmed using TGA. The synthesized complexes were used as catalysts in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol in an aqueous phase in the presence of sodium borohydride. In this work, the catalytic reactivity of nanostructured complexes was compared using the rate constant (k) of the reaction. The reaction time for the reduction of 4-NP was 5–14 min for different complexes. The catalytic system based on Ni2+/2-hydroxybenzaldehyde was the most active and displayed reusability in the reduction of 4-NP.  相似文献   

6.
The photocatalytic degradation of 4-nitrophenol as pollutant in aqueous solutions was investigated under visible light irradiation over two different N?CS-codoped anatase TiO2 catalysts prepared by sol?Cgel methods using titanium isopropoxide and titanium tetrachloride as two different precursors. The catalysts were characterized by XRD, SEM, DRS, EDAX and FT-IR. The effects of various operating parameters including the initial concentration of 4-nitrophenol (2?C14?ppm), solution pH (5?C8) and kinetic reactions were studied. The optimum solution pH was at around 6. For comparison purpose, the photodegradation activity of the commercial Degussa P-25 TiO2 catalyst has also been studied. The results indicated that photocatalytic activity of N?CS-codoped TiO2 with titanium isopropoxide as precursor was higher than N?CS-codoped TiO2 with titanium tetrachloride as precursor and Degussa P-25.  相似文献   

7.
Research on Chemical Intermediates - This study deals with reduction of ortho and para-nitroaniline by NaBH4 with silver nanoparticles (AgNPs), synthesized by use of a green method, as catalyst. In...  相似文献   

8.
An efficient and mild method for catalytic transfer hydrogenation of CC and CN double bonds with the aid of resin-supported formate (PSF) as the hydrogen donor and palladium acetate as the catalyst is reported.  相似文献   

9.
The use of water extract of waste papaya bark ash for the in situ generation of palladium nanoparticles (Pd NPs) as an efficient and environmentally friendly basic medium for the Sonogashira reaction at room temperature is reported. This methodology follows green chemistry principles as the reaction is performed using agro waste (natural feedstock) for the generation of the Pd NPs as well as for providing a basic medium for the reaction in the absence of any additional organic or inorganic base, ligand and copper salt, giving excellent yield of cross‐coupled product at room temperature. The reaction conditions are compatible with electronically diverse aryl iodides and electronically diverse alkyne derivatives.  相似文献   

10.
Here,Ag_2S nanoparticles on reduced graphene oxide(Ag_2S NPs/RGO) nanocomposites with relatively good distribution are synthesized for the first time by conversing Ag NPs/RGO to Ag_2S NPs/RGO via a facile hydrothermal sulfurization method.As an noval catalyst for the reduction of 4-nitrophenol(4-NP),it only takes 5 min for Ag_2S NPs/RGO to reduce 98% of 4-NP,and the rate constant of the composites is almost 13 times higher than that of Ag NPs/RGO composites.The high catalytic activity of Ag_2S NPs/RGO can be attributed to the following three reasons:(1) Like metal complex catalysts,the Ag_2S NPs is also rich with metal center Ag(δ~+),with pendant base S(δ) close to it,and thus the Ag and basic S function as the electron-acceptor and proton-acceptor centers,respectively,which facilitates the catalyst reaction;(2)RGO features the high adsorption ability toward 4-NP which provides a high concentration of 4-NP near the Ag_2S NPs;and(3) electron transfer from RGO to Ag_2S NPs,facilitating the uptake of electrons by 4-NP molecules.  相似文献   

11.
Journal of Solid State Electrochemistry - Thin film of metallic Cu nanoparticles was synthesized by a one-pot chemical reduction method at ambient temperature. Cu(II) acetate monohydrate and...  相似文献   

12.
In this research article we have demonstrated the sustainable green synthesis of a novel starch templated CuO NP following a clean and non-hazardous pathway. Ultrasonic irradiation was used to promote the reaction in alkaline medium. The numerous hydroxyl groups present in starch was exploited in the green reduction of immobilized copper ions in situ. They also helped to stabilize the as synthesized Cu NPs by encapsulation or capping. The morphology and physicochemical characteristics were ascertained over an array of analytical techniques like Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), Elemental Mapping, Transmission Electron Microscopy (TEM), X-ray Diffraction (XRD), and Inductively Coupled Plasma-Atomic Emission Spectrometry (ICP-AES). Biologically, the nanocomposite exhibited excellent cytotoxicity against human renal cell carcinoma (RCC-GH, CaKi-2 and HEK293) cell lines without affecting the normal (HUVEC) cell line. IC50 values of the nanocomposite were found at 139, 208and 125 against RCC-GH, CaKi-2 and HEK293 cell lines respectively and accordingly, HEK293 afforded the best adenocarcinoma activity.  相似文献   

13.
In the current work, we followed a green chemistry route to prepare and characterize the silver nanoparticles (AgNPs) using Syzygium aromaticum (clove) extract at room temperature. Suitably, the clove extract acted as a reducing agent as well as a capping agent, and these reactions occurred rapidly. The formation of the AgNPs was confirmed by the observation of the distinct absorption peak at a wavelength of 418 nm using ultraviolet–visible (UV–Vis) spectroscopy, and a morphological study confirmed the uniform distribution of the optimally spherical nanoparticles. Fourier transform infrared spectroscopy (FTIR) results indicated the methoxy and allyl functional groups of eugenol of the clove extract to be responsible for the bioreduction of silver ions and for the stabilization of the resulting nanoparticles (flavonoids). We also found the AgNPs to be effective catalysts of the degradation of three pollutant organic dyes viz., 4‐nitrophenol, methylene blue and rhodamine B, in the presence of excess NaBH4. The antibacterial and antifungal activities of the bio‐synthesized AgNPs were also explored. Overall, the results suggested the potential use of clove extract as a resource for the synthesis of AgNPs having a broad range of possible commercial and biomedical applications.  相似文献   

14.
Nearly monodisperse poly(N ‐isopropylacrylamide‐co ‐acrylamide) [P(NIPAM‐co‐AAm)] microgels were synthesized using precipitation polymerization in aqueous medium. These microgels were used as microreactors to fabricate silver nanoparticles by chemical reduction of silver ions inside the polymer network. The pure and hybrid microgels were characterized using Fourier transform infrared and UV–visible spectroscopies, dynamic light scattering, X‐ray diffraction, thermogravimetric analysis, differential scanning calorimetry and transmission electron microscopy. Results revealed that spherical silver nanoparticles having diameter of 10–20 nm were successfully fabricated in the poly(N ‐isopropylacrylamide‐co ‐acrylamide) microgels with hydrodynamic diameter of 250 ± 50 nm. The uniformly loaded silver nanoparticles were found to be stable for long time due to donor–acceptor interaction between amide groups of polymer network and silver nanoparticles. Catalytic activity of the hybrid system was tested by choosing the catalytic reduction of 4‐nitrophenol as a model reaction under various conditions of catalyst dose and concentration of NaBH4 at room temperature in aqueous medium to explore the catalytic process. The progress of the reaction was monitored using UV–visible spectrophotometry. The pseudo first‐order kinetic model was employed to evaluate the apparent rate constant of the reaction. It was found that the apparent rate constant increased with increasing catalyst dose due to an increase of surface area as a result of an increase in the number of nanoparticles.  相似文献   

15.
We demonstrate a single-step facile approach for the synthesis of glycine (amino acid) passivated Fe(3)O(4) magnetic nanoparticles (GMNPs) using soft chemical route. The surface passivation of Fe(3)O(4) nanoparticles with glycine molecules was evident from infrared spectroscopy, thermal and elemental analyses, and light scattering measurements. These nanoparticles show better colloidal stability, good magnetization, excellent self-heating capacity under external AC magnetic field and cytocompatibility with cell lines. Further, the active functional groups (-NH(2)) present on the surface of Fe(3)O(4) nanoparticles can be accessible for routine conjugation of biomolecules/biolabelling through well-developed bioconjugation chemistry. Specifically, a new colloidal glycine passivated biocompatible Fe(3)O(4) nanoparticles with excellent specific absorption rate (SAR) have been fabricated, which can be used as an effective heating source for hyperthermia treatment of cancer (thermal therapy).  相似文献   

16.
Ce0.6Mn0.4O2 catalysts with different sources of manganese and Ce0.6-xZrxMn0.4O2 mixed oxide catalysts were prepared by coprecipitation method and were characterized by N2 adsorption-desorption,TPR,XRD,and XPS techniques.The activities of the prepared catalysts for ethyl acetate combustion,and the effects of calcination temperature and space velocity on catalytic activity were investigated.The results showed that partial replacement of Mn(NO3)2 with KMnO4 as sources of manganese could improve activities of catalysts.Ce0.45Zr0.15Mn0.4O2 catalyst exhibited the best catalytic activity and high thermal stability,e.g.,T90 could be still below 210℃ even if space velocity was up to 20000h-1.  相似文献   

17.
The immobilization of gold nanoparticles in anion exchange resin and their quantitative retrieval by means of a cationic surfactant, cetylpyridinium chloride, is studied. The resin-bound gold nanoparticles (R-Au) have been used successfully as a solid-phase catalyst for the reduction of 4-nitrophenol by sodium borohydride. At the end of the reaction, the solid matrix remains activated and separated from the product. The recycling of catalyst particles after the quantitative reduction of 4-nitrophenol and the recovery of gold nanoparticles with unaffected particle morphology from the resin-bound gold nanoparticle entity have been reported.  相似文献   

18.
李国峰  陈梅  孔瑛  侯影飞 《合成化学》2017,25(10):827-831
分别将活性炭(AC-1)在65%HNO3和空气中进行氧化处理,制得两种表面改性的活性炭载体(AC-2和AC-3)。以AC-1~AC-3为载体,采用等体积分步浸渍法制备了3种Pt-Sn/AC催化剂(Cat-1~Cat-3),其结构经XRD, TEM, FT-IR, TG-DTG和N2吸附-脱附表征。以正丁烷脱氢反应为模板反应,研究了Cat-1~Cat-3的催化性能。结果表明:Cat-2催化性能最好,正丁烷脱氢转化率71.5%,正丁烯选择性77.5%。  相似文献   

19.
In the present study copper oxide nanoparticles (CuO NPs) were synthesized using a hydrothermal method with ranolazine as a shape-directing agent. Ranolazine-functionalized CuO NPs were characterized by various analytical techniques such as scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction (XRD). The SEM pattern confirmed the morphology of ranolazine-functionalized CuO NPs with well-defined rice-like structures. FTIR spectroscopy confirmed the interaction between CuO NPs and ranolazine. The XRD analysis indicated that the structure of ranolazine-functionalized CuO NPs was monoclinic crystalline and the size ranged between 9 and 18 nm with an average particle size of 12 nm. The smaller size range of CuO NPs gave a large surface area that enhanced the efficiency of these catalysts employed for the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the H 2 O system. In homogeneous catalysis, results showed that 50 μL of CuO NPs was required in the presence of NaBH4 for 99% reduction of 4-NP in 240 s. On the other hand, for heterogeneous catalysis, 0.5 mg of CuO NPs was used in the presence of NaBH4 for 99% catalytic reduction of 4-NP to 4-AP in 320 s. The rate of reaction for homogeneous catalysis and heterogeneous catalysis was determined from the plots of In(Ct /C0) of 4-NP versus time (s), which showed good linearity with values of 1.3 × 10 -2 and 8.8 × 10 -3 s -1 . respectively. The high-quality catalytic efficiency, good reusability, nontoxic nature, and low cost are favorable properties of the synthesized CuO NPs for use as efficient catalysts for reduction of 4-AP to 4-NP in both homogeneous and heterogeneous media.  相似文献   

20.
Cu-Mn-Ce/γ-Al2O3汽车尾气净化催化材料的合成及性能的研究   总被引:1,自引:1,他引:1  
采用固定床反应装置,模拟汽车尾气的组成成分,以CO氧化和NH3选择还原NO为探针反应,研究了焙烧温度和焙烧时间等因素对复合金属氧化物催化材料Cu-Mn-Ce-O/γ-Al2O3的催化活性的影响,并考察了该催化剂的抗硫化中毒性能。在本研究条件下,焙烧温度在700℃左右,焙烧时间为2.5h时,催化剂对NO-CO体系中CO的氧化率在76%,以上,对NH3-NO体系中的NO的最佳催化还原率在80%以上。催化剂在3.O%S02/空气气氛中强制中毒后,其在NH3-NO气氛中的最佳反应温度.450℃,同样条件下未中毒催化剂的最佳反应温度为350℃左右,并且催化剂中毒后对NO—NH3的最大转化率没有下降,但是对NO-CO体系的反应活性明显下降,说明该催化剂具有良好的高温活性和抗硫中毒性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号