首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this paper, the behavior of a Griffith crack at the interface of a layer boned to a half plane subjected to a uniform tension is investigated by use of the Schmidt method under the assumptions that the effect of the crack surface overlapping very near the crack tips is negligible and also there is a sufficiently large component of mode-I loading so that the crack essentially remains open. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations in which the unknown variables are the jumps of the displacements across the crack surfaces. To solve the dual integral equations, the jumps of the displacements across the crack surfaces are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the effects of the crack length, the thickness of the material layer and the materials constants upon the stress intensity factor of the crack. As a special case in our solution, we also give the solution of the ordinary crack in homogeneous materials. Contrary to the previous solution of the interface crack problem, it is found that the stress singularities of the present interface crack solution are similar with ones for the ordinary crack in homogeneous materials.  相似文献   

2.
The lowest order solution to crack–inhomogeneity interaction is derived for mode I crack. The basic solution evaluates the variation of near-tip stress intensity factors induced by an inhomogeneity of arbitrary shape. A set of simplified forms of the basic solution is also obtained for several special inhomogeneity shapes. As validated by numerical examples, the approximate solutions have good accuracy.  相似文献   

3.
Scattering of monochromatic elastic waves on an isolated planar crack of arbitrary shape is considered. The 2D-integral equation for the crack opening vector is discretized by Gaussian approximating functions. For such functions, the elements of the matrix of the discretized problem have forms of standard one-dimensional integrals that can be tabulated. For regular grids of approximating nodes, the matrix of the discretized problem has the Toeplitz structure, and the corresponding matrix–vector products can be calculated by the fast Fourier transform technique. The latter strongly accelerates the process of iterative solution of the discretized problem. Examples of calculations of crack opening vectors, dynamic stress-intensity factors, and differential cross-sections of circular (penny-shaped) and non-circular cracks for various incident wave fields are presented. For a penny-shaped crack and longitudinal incident waves normal to the crack plane, an efficient semi-analytical method of the solution of the scattering problem is developed. The results of both methods are compared in a wide frequency region of the incident field.  相似文献   

4.
The behaviors of an interface crack between dissimilar orthotropic elastic halfplanes subjected to uniform tension was reworked by use of the Schmidt method. By use of the Fourier transform, the problem can be solved with the help of two pairs of dual integral equations, of which the unknown variables are the jumps of the displacements across the crack surfaces. Numerical examples are provided for the stress intensity factors of the cracks. Contrary to the previous solution of the interface crack, it is found that the stress singularity of the present interface crack solution is of the same nature as that for the ordinary crack in homogeneous materials. When the materials from the two half planes are the same, an exact solution can be otained.  相似文献   

5.
Using the boundary integral equation method, the problem of stationary heat conduction and thermoelasticity for a semi-infinite body with a crack parallel to its boundary is solved. Temperature or heat flow on the crack is prescribed. The body boundary is heat-insulated or is at zero temperature. The dependence of the stress intensity factor on the depth of occurrence of a circular crack at a constant temperature or under a constant heat flow is studied. In contrast to mechanical loading, thermal loading shows less SIF values than in an infinite body __________ Translated from Prikladnaya Mekhanika, Vol. 43, No. 4, pp. 46–54, April 2007.  相似文献   

6.
The ferrite and ferroelectric phase of magnetoelectroelastic (MEE) material can be selected and processed to control the macroscopic behavior of electron devices using continuum mechanics models. Once macro- and/or microdefects appear, the highly intensified magnetic and electric energy localization could alter the response significantly to change the design performance. Alignment of poling directions of piezomagnetic and piezoelectric materials can add to the complexity of the MEE material behavior to which this study will be concerned with.Appropriate balance of distortional and dilatational energy density is no longer obvious when a material possesses anisotropy and/or nonhomogeneity. An excess of the former could result in unwanted geometric change while the latter may lead to unexpected fracture initiation. Such information can be evaluated quantitatively from the stationary values of the energy density function dW/dV. The maxima and minima have been known to coincide, respectively, with possible locations of permanent shape change and crack initiation regardless of material and loading type. The direction of poling with respect to a line crack and the material microstructure described by the constitutive coefficients will be specified explicitly with reference to the applied magnetic field, electric field and mechanical stress, both normal and shear. The crack initiation load and direction could be predicted by finding the direction for which the volume change is the largest. In contrast to intuition, change in poling directions can influence the cracking behavior of MEE dramatically. This will be demonstrated by the numerical results for the BaTiO3–CoFe2O4 composite having different volume fractions where BaTiO3 and CoFe2O4 are, respectively, the inclusion and matrix.To be emphasized is that mode I and II crack behavior will not have the same definition as that in classical fracture mechanics where load and crack extension symmetry would coincide. A striking result is found for a mode II crack. By keeping the magnetic poling fixed, a reversal of electric poling changed the crack initiation angle from θ0=+80° to θ0=−80° using the line extending ahead of the crack as the reference. This effect is also sensitive to the distance from the crack tip. Displayed and discussed are results for r/a=10−4 and 10−1. Because the theory of magnetoelectroelasticity used in the analysis is based on the assumption of equilibrium where the influence of material microstructure is homogenized, the local space and temporal effects must be interpreted accordingly. Among them are the maximum values of (dW/dV)max and (dW/dV)min which refer to as possible sites of yielding and fracture. Since time and size are homogenized, it is implicitly understood that there is more time for yielding as compared to fracture being a more sudden process. This renders a higher dW/dV in contrast to that for fracture. Put it differently, a lower dW/dV with a shorter time for release could be more detrimental.  相似文献   

7.
Elastic reciprocity and geometric symmetry are used to constrain the expressions for stresses due to introduction of line dislocations near a half-space surface. Specifically, a relationship is shown to exist between the changes induced by dislocations of orthogonal Burgers vectors (normal and parallel to the free surface). These results are used to address inconsistencies of solutions in the literature.  相似文献   

8.
The scattering of general SH plane wave by an interface crack between two dissimilar viscoelastic bodies is studied and the dynamic stress intensity factor at the crack-tip is computed. The scattering problem can be decomposed into two problems: one is the reflection and refraction problem of general SH plane waves at perfect interface (with no crack); another is the scattering problem due to the existence of crack. For the first problem, the viscoelastic wave equation, displacement and stress continuity conditions across the interface are used to obtain the shear stress distribution at the interface. For the second problem, the integral transformation method is used to reduce the scattering problem into dual integral equations. Then, the dual integral equations are transformed into the Cauchy singular integral equation of first kind by introduction of the crack dislocation density function. Finally, the singular integral equation is solved by Kurtz's piecewise continuous function method. As a consequence, the crack opening displacement and dynamic stress intensity factor are obtained. At the end of the paper, a numerical example is given. The effects of incident angle, incident frequency and viscoelastic material parameters are analyzed. It is found that there is a frequency region for viscoelastic material within which the viscoelastic effects cannot be ignored. This work was supported by the National Natural Science Foundation of China (No.19772064) and by the project of CAS KJ 951-1-20  相似文献   

9.
Using Green’s functions, the extended general displacement solutions of a three-dimensional crack problem in anisotropic electro-magneto-elastic (EME) bimaterials under extended loads are analyzed by the boundary element method. Then, the crack problem is reduced to solving a set of hypersingular integral equations (HIE) coupled with boundary integral equations. The singularity of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of HIE, and the exact analytical solutions of the extended singular stresses and extended stress intensity factors (SIFs) near the crack front in anisotropic EME bimaterials are given. Also, the numerical method of the HIE for a rectangular crack subjected to extended loads is put forward with the extended crack opening dislocation approximated by the product of basic density functions and polynomials. At last, numerical solutions of the extended SIFs of some examples are obtained.  相似文献   

10.
Understanding sub-Rayleigh-to-intersonic transition of mode II cracks is a fundamental problem in fracture mechanics with important practical implications for earthquake dynamics and seismic radiation. In the Burridge-Andrews mechanism, an intersonic daughter crack nucleates, for sufficiently high prestress, at the shear stress peak traveling with the shear wave speed in front of the main crack. We find that sub-Rayleigh-to-intersonic transition and sustained intersonic propagation occurs in a number of other models that subject developing cracks to intersonic loading fields. We consider a spontaneously expanding sub-Rayleigh crack (or main crack) which advances, along a planar interface with linear slip-weakening friction, towards a place of favorable heterogeneity, such as a preexisting subcritical crack or a small patch of higher prestress (similar behavior is expected for a small patch of lower static strength). For a range of model parameters, a secondary dynamic crack nucleates at the heterogeneity and acquires intersonic speeds due to the intersonic stress field propagating in front of the main crack. Transition to intersonic speeds occurs directly at the tip of the secondary crack, with the tip accelerating rapidly to values numerically equal to the Rayleigh wave speed and then abruptly jumping to an intersonic speed. Models with favorable heterogeneity achieve intersonic transition and propagation for much lower prestress levels than the ones implied by the Burridge-Andrews mechanism and have transition distances that depend on the position of heterogeneity. We investigate the dependence of intersonic transition and subsequent crack propagation on model parameters and discuss implications for earthquake dynamics.  相似文献   

11.
蠕变材料Ⅰ型动态扩展裂纹尖端场   总被引:4,自引:1,他引:4  
唐立强  蔡艳红 《力学学报》2005,37(5):573-578
为了研究黏性效应作用下的动态扩展裂纹尖端渐近场,建立了蠕变材料Ⅰ型动态扩展裂纹的 力学模型.首先,依据在稳态蠕变阶段,弹性变形和黏性变形同时在裂纹尖端场中占主导地 位,由量级协调可知,应力和应变具有相同的奇异量级,即(σ,ε)∝/ r- 1/(n-1). 其次,通过渐近分析推导出动态扩展裂纹尖端场的控制方程并求得了裂纹尖端应 力、应变和位移分离变量形式的渐近解.最后,采用双参数打靶法求得了裂纹尖端应力、应 变的数值结果.数值计算表明,裂尖场主要受材料的蠕变指数n和马赫数M的控制;在Ⅰ 型动态扩展裂纹前方,环向应变达到最大值,可据此建立断裂准则. 由于裂纹稳定扩展与非稳定扩展的主奇异项相同,因此对于稳定扩展裂纹的渐近分析方 法,同样适用于非稳定的裂纹扩展问题.  相似文献   

12.
利用双材料位移基本解和Somigliana公式,将三维体内含垂直于双材料界面混合型裂纹问题归结为求解一组超奇异积分方程。使用主部分析法,通过对裂纹前沿应力奇性的分析,得到用裂纹面位移间断表示的应力强度因子的计算公式,进而利用超奇异积分方程未知解的理论分析结果和有限部积分理论,给出了超奇异积分方程的数值求解方法。最后,对典型算例的应力强度因子做了计算,并讨论了应力强度因子数值结果的收敛性及其随各参数变化的规律。  相似文献   

13.
A three-dimensional wave field formed owing to diffraction of low-frequency waves on a curved crack in an infinite elastic solid at a large distance from the defect is studied by the method of boundary integral equations. Direction diagrams of the scattered field versus the excentricity of the crack surface and wavenumber are obtained for different directions of incidence of planar longitudinal waves onto a gently sloping spheroidal crack. __________ Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 47, No. 4, pp. 115–123, July–August, 2006.  相似文献   

14.
EXACTSOLUTIONSOFNEARCRACKLINEFIELDSFORMODEICRACKUNDERPLANESTRESSCONDITIONINANELASTIC-PERFECTLYPLASTICSOLIDEXACTSOLUTIONSOFNEA...  相似文献   

15.
This paper presents a study to describe the behaviour of a non-equilibrium bubble in a fluid (Fluid 1) that is in contact with another fluid (Fluid 2). Fluid 2 is assumed to incorporate some elastic properties, which are modelled through a pressure term at the fluid–fluid interface. The Laplace equation is assumed to be valid in both fluids and the boundary integral method is employed to simulate the dynamics of the bubble and the fluid–fluid interface. Interesting characteristic phenomena concerning bubble oscillations and the deformation of the fluid–fluid interface are studied for a range of parameters (distance from the fluid–fluid interface, density ratios of the two fluids and elastic properties of Fluid 2). Some of the phenomena observed are jet formation in the bubble, bubble splitting, a ring bubble separating from the main bubble, mushroom-shaped bubbles and the dynamic elevation of the elastic interface. Most of these phenomena are only observed when Fluid 2 possesses some elastic properties (besides the usual formation of a high speed liquid jet). Comparisons with experimental observations confirm the validity of our simulations.  相似文献   

16.
Theoretical analysis of crack front instability in mode I+III   总被引:1,自引:0,他引:1  
This paper focusses on the theoretical prediction of the widely observed crack front instability in mode I+III, that causes both the crack surface and crack front to deviate from planar and straight shapes, respectively. This problem is addressed within the classical framework of fracture mechanics, where the crack front evolution is governed by conditions of constant energy-release-rate (Griffith criterion) and vanishing stress intensity factor of mode II (principle of local symmetry) along the front. The formulation of the linear stability problem for the evolution of small perturbations of the crack front exploits previous results of Movchan et al. (1998) (suitably extended) and Gao and Rice (1986), which are used to derive expressions for the variations of the stress intensity factors along the front resulting from both in-plane and out-of-plane perturbations. We find exact eigenmode solutions to this problem, which correspond to perturbations of the crack front that are shaped as elliptic helices with their axis coinciding with the unperturbed straight front and an amplitude exponentially growing or decaying along the propagation direction. Exponential growth corresponding to unstable propagation occurs when the ratio of the unperturbed mode III to mode I stress intensity factors exceeds some “threshold” depending on Poisson's ratio. Moreover, the growth rate of helical perturbations is inversely proportional to their wavelength along the front. This growth rate therefore diverges when this wavelength goes to zero, which emphasizes the need for some “regularization” of crack propagation laws at very short scales. This divergence also reveals an interesting similarity between crack front instability in mode I+III and well-known growth front instabilities of interfaces governed by a Laplacian or diffusion field.  相似文献   

17.
In this paper, the stress and strain structures of Mode I 3-D crack in power hardening material are studied by analyzing the fundamental equations of elastic-plastic mechanics. It is shown that three regions, Z1,Z2 and Z3 can be divided in the thickness direction according to the stress characteristic. In region Z1, the stress components in the plane Perpendicular to z axis (thickness direction) can be solved first using the fundamental equations of plane strain state; in region Z3, they can be solved first by the equations of plane stress state. The region Z2 is defined as a transition layer. It is shown that the transition layer is the characteristic of Mode I 3-D crack in elastic-plastic state, and it is significant to the research on 3-D fracture. The crack tip opening displacement CTOD is chosen to describe the amplitude coefficient of the local stress field, and the distribution of CTOD in 3-D state is investigated.The project supported by National Natural Science Foundation of China.  相似文献   

18.
Closed form solution of quadruple integral equations involving inverse Mellin transforms has been obtained. The solution of quadruple integral equations is used in solving a two dimensional four-part mixed boundary value contact problem for an elastic wedge-shaped region as an application. Closed form expression for shear stress has been obtained. Finally, numerical results for shear stress are obtained and shown graphically.  相似文献   

19.
This paper is concerned with dynamic problems in fracture mechanics for elastic solids having cracks with contacting faces. The contact problem for a penny-shaped crack with a nonzero initial opening under normally incident harmonic wave is solved by the method of boundary integral equations. The solutions are compared with those that neglect the contact interaction of the crack faces. Results are presented for different values of the initial crack opening Presented at the 6th International Conference on Modern Practice in Stress and Vibration Analysis (Bath, United Kingdom, September 5–7, 2006). Published in Prikladnaya Mekhanika, Vol. 43, No. 7, pp. 125–131, July 2007.  相似文献   

20.
The paper analyzes numerically the passages to the limit in the dynamic problem for a penny-shaped crack at the interface between dissimilar linear elastic, homogeneous, isotropic materials as either the frequency of harmonic load or the difference between the properties of the materials decreases. It is shown that as the frequency decreases, the solution of the dynamic problem tends to that of the static problem, and as the physical and mechanical properties of the materials become less different, the original problem goes into the dynamic problem for a crack in a homogeneous body __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 26–34, July 2008.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号