共查询到20条相似文献,搜索用时 15 毫秒
1.
A Bifunctional Electrocatalyst for Oxygen Evolution and Oxygen Reduction Reactions in Water 下载免费PDF全文
Prof. Dr. Wolfgang Schöfberger Dipl.‐Ing. Felix Faschinger Samir Chattopadhyay Snehadri Bhakta Biswajit Mondal Prof. Dr. Johannes A. A. W. Elemans Prof. Dr. Stefan Müllegger M. Sc. Stefano Tebi Prof. Dr. Reinhold Koch Priv.‐Doz. Dr. Florian Klappenberger Dipl.‐Chem. Mateusz Paszkiewicz Prof. Dr. Johannes V. Barth Dr. Eva Rauls Hazem Aldahhak Prof. Dr. Wolf Gero Schmidt Prof. Dr. Abhishek Dey 《Angewandte Chemie (International ed. in English)》2016,55(7):2350-2355
Oxygen reduction and water oxidation are two key processes in fuel cell applications. The oxidation of water to dioxygen is a 4 H+/4 e? process, while oxygen can be fully reduced to water by a 4 e?/4 H+ process or partially reduced by fewer electrons to reactive oxygen species such as H2O2 and O2?. We demonstrate that a novel manganese corrole complex behaves as a bifunctional catalyst for both the electrocatalytic generation of dioxygen as well as the reduction of dioxygen in aqueous media. Furthermore, our combined kinetic, spectroscopic, and electrochemical study of manganese corroles adsorbed on different electrode materials (down to a submolecular level) reveals mechanistic details of the oxygen evolution and reduction processes. 相似文献
2.
Dr. Jae‐Il Jung Dr. Hu Young Jeong Jang‐Soo Lee Dr. Min Gyu Kim Prof. Dr. Jaephil Cho 《Angewandte Chemie (International ed. in English)》2014,53(18):4582-4586
La0.3(Ba0.5Sr0.5)0.7Co0.8Fe0.2O3?δ is a promising bifunctional perovskite catalyst for the oxygen reduction reaction and the oxygen evolution reaction. This catalyst has circa 10 nm‐scale rhombohedral LaCoO3 cobaltite particles distributed on the surface. The dynamic microstructure phenomena are attributed to the charge imbalance from the replacement of A‐site cations with La3+ and local stress on Co‐site sub‐lattice with the cubic perovskite structure. 相似文献
3.
Ashalatha Vazhayil Dr. Linsha Vazhayal Shyamli Ashok C Dr. Jasmine Thomas Dr. Nygil Thomas 《ChemCatChem》2024,16(6):e202301250
For the advancement of electrochemical energy conversion and storage technologies, bifunctional electrocatalysts are crucial for efficiently driving both the oxygen evolution (OER) and reduction reactions (ORR). Cobalt-based spinel oxides are a class of promising bifunctional electrocatalysts. However their low electrical conductivity and stability may hinder further improvement. A novel composite material composed of NiCo2O4 nanoparticles integrated with emerging two dimensional MXene nanosheets (NiCo2O4/MXene) was developed. The successful integration of NiCo2O4 with MXene brings about a number of attractive structural features. This includes synergistic effects between NiCo2O4 and MXene, highly accessible surface areas, complete exposure of numerous active sites, and excellent electronic conductivity, all of which collectively contribute to the desirability of composite material for OER and ORR. The synthesized NiCo2O4/MXene composite showed extraordinary OER electrocatalytic activity with a lower overpotential of 360 mV at a current density of 10 mA/cm2, and a small Tafel slope of 64 mV/dec compared to NiCo2O4, MXene and NiCo2O4+MXene (physically mixed). Additionally, NiCo2O4/MXene displays an ORR limiting current density of −4 mA/cm2 and exhibited highest onset potential and half wave potential of 0.92 V and 0.72 V vs. RHE, respectively, for the ORR in alkaline media compared to NiCo2O4, MXene and NiCo2O4+MXene (physically mixed). 相似文献
4.
Dr. Mahendra K. Awasthi Abhishek Saini Chandan Das Anwesha Banerjee Naseer Ahmad Shah Prof. Dr. Goutam Kumar Lahiri Prof. Dr. Arnab Dutta 《欧洲无机化学杂志》2023,26(27):e202300204
The proper utilization of renewable energy sources has emerged as a major challenge in our pursuit of a sustainable and carbon-neutral energy landscape. Small molecule activation is a key component for proper utilization of renewable energy resources, where O2/H2O redox couple is reckoned to be a potential game changer. In this regard, electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) have become the prime interest of catalyst designers. Typically, these ORR and OER electrocatalysts are developed distinctly; however, very soon, the requirement of a bidirectional ORR/OER electrocatalyst becomes obvious for practical applicability and rapid energy transduction purposes. A bidirectional catalyst is defined as a catalyst capable of driving a redox reaction in opposing directions. This review has portrayed the development of enzyme structure-inspired design of molecular bidirectional ORR/OER catalysts. The strategic incorporation of secondary and outer coordination sphere features has significantly enhanced the performance of these catalysts, which can be monitored via the key catalytic parameters. These bifunctional OER/ORR catalysts are vital for metal-air battery and fuel cell applications and appropriately poised to lay the foundation for an efficient, economical, and eco-friendly pathway for sustainable energy usage with the rational assembly of energy converting and storage devices. 相似文献
5.
Xing Wu Prof. Chongjian Tang Prof. Yi Cheng Prof. Xiaobo Min Prof. San Ping Jiang Prof. Shuangyin Wang 《Chemistry (Weinheim an der Bergstrasse, Germany)》2020,26(18):3906-3929
Metal-air batteries (MABs) and reversible fuel cells (RFCs) rely on the bifunctional oxygen catalysts for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR). Finding efficient bifunctional oxygen catalysts is the ultimate goal and it has attracted a great deal of attention. The dilemma is that a good ORR catalyst is not necessarily efficient for OER, and vice versa. Thus, the development of a new type of bifunctional oxygen catalysts should ensure that the catalysts exhibit high activity for both OER and ORR. Composites with multicomponents for active centers supported on highly conductive matrices could be able to meet the challenges and offering new opportunities. In this Review, the evolution of bifunctional catalysts is summarized and discussed aiming to deliver high-performance bifunctional catalysts with low overpotentials. 相似文献
6.
Yun Tong Pengzuo Chen Tianpei Zhou Dr. Kun Xu Dr. Wangsheng Chu Prof. Changzheng Wu Prof. Yi Xie 《Angewandte Chemie (International ed. in English)》2017,56(25):7121-7125
The electrocatalyzed oxygen reduction and evolution reactions (ORR and OER, respectively) are the core components of many energy conversion systems, including water splitting, fuel cells, and metal–air batteries. Rational design of highly efficient non-noble materials as bifunctional ORR/OER electrocatalysts is of great importance for large-scale practical applications. A new strongly coupled hybrid material is presented, which comprises CoOx nanoparticles rich in oxygen vacancies grown on B,N-decorated graphene (CoOx NPs/BNG) and operates as an efficient bifunctional OER/ORR electrocatalyst. Advanced spectroscopic techniques were used to confirm formation of abundant oxygen vacancies and strong Co−N−C bridging bonds within the CoOx NPs/BNG hybrid. Surprisingly, the CoOx NPs/BNG hybrid electrocatalyst is highly efficient for the OER with a low overpotential and Tafel slope, and is active in the ORR with a positive half-wave potential and high limiting current density in alkaline medium. 相似文献
7.
Weijin Li Song Xue Sebastian Watzele Shujin Hou Johannes Fichtner A. Lisa Semrau Liujiang Zhou Alexander Welle Aliaksandr S. Bandarenka Roland A. Fischer 《Angewandte Chemie (International ed. in English)》2020,59(14):5837-5843
Metal–organic frameworks (MOFs) and their derivatives are considered as promising catalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), which are important for many energy provision technologies, such as electrolyzers, fuel cells and some types of advanced batteries. In this work, a “strain modulation” approach has been applied through the use of surface‐mounted NiFe‐MOFs in order to design an advanced bifunctional ORR/OER electrocatalyst. The material exhibits an excellent OER activity in alkaline media, reaching an industrially relevant current density of 200 mA cm?2 at an overpotential of only ≈210 mV. It demonstrates operational long‐term stability even at a high current density of 500 mA cm?2 and exhibits the so far narrowest “overpotential window” ΔEORR‐OER of 0.69 V in 0.1 m KOH with a mass loading being two orders of magnitude lower than that of benchmark electrocatalysts. 相似文献
8.
Yan Zhang Fei Ye Wei-Dong Z. Li 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(11):3766-3771
The development of high-efficiency bifunctional electrocatalysts toward the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in alkaline surroundings is essential and challenging for the large-scale generation of clean hydrogen. Herein, a novel self-assembled two-dimensional (2 D) NiO/CeO2 heterostructure (HS) consisting of NiO and CeO2 nanocrystals is prepared through a facile two-step approach, and utilized as an enhanced bifunctional electrocatalyst for the HER and OER under alkaline conditions. It is concluded that this 2 D NiO/CeO2 HS, rich in oxygen vacancies, demonstrates attractive electrocatalytic properties for both the HER and OER in 1 m KOH, including low onset overpotential (η1), η10 and Tafel slope, excellent durability, as well as large active surface area. Therefore, the self-assembled 2 D NiO/CeO2 HS is believed to be an efficient bifunctional electrocatalyst toward the HER and OER. 相似文献
9.
A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction 下载免费PDF全文
Xia Long Jinkai Li Shuang Xiao Keyou Yan Zilong Wang Haining Chen Shihe Yang 《Angewandte Chemie (International ed. in English)》2014,53(29):7584-7588
Cost‐effective electrocatalysts for the oxygen evolution reaction (OER) are critical to energy conversion and storage processes. A novel strategy is used to synthesize a non‐noble‐metal‐based electrocatalyst of the OER by finely combining layered FeNi double hydroxide that is catalytically active and electric conducting graphene sheets, taking advantage of the electrostatic attraction between the two positively charged nanosheets. The synergy between the catalytic activity of the double hydroxide and the enhanced electron transport arising from the graphene resulted in superior electrocatalytic properties of the FeNi‐GO hybrids for the OER with overpotentials as low as 0.21 V, which was further reduced to 0.195 V after the reduction treatment. Moreover, the turnover frequency at the overpotential of 0.3 V has reached 1 s?1, which is much higher than those previously reported for non‐noble‐metal‐based electrocatalysts. 相似文献
10.
11.
Two-dimensional metal-organic frameworks (2D MOFs) inherently consisting of metal entities and ligands are promising single-atom catalysts (SACs) for electrocatalytic chemical reactions. Three 2D Fe-MOFs with NH, O, and S ligands were designed using density functional theory calculations, and their feasibility as SACs for hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR) was investigated. The NH, O, and S ligands can be used to control electronic structures and catalysis performance in 2D Fe-MOF monolayers by tuning charge redistribution. The results confirm the Sabatier principle, which states that an ideal catalyst should provide reasonable adsorption energies for all reaction species. The 2D Fe-MOF nanomaterials may render highly-efficient HER, OER, and ORR by tuning the ligands. Therefore, we believe that this study will serve as a guide for developing of 2D MOF-based SACs for water splitting, fuel cells, and metal-air batteries. 相似文献
12.
Sm0.5Sr0.5Co1−xNixO3−δ—A Novel Bifunctional Electrocatalyst for Oxygen Reduction/Evolution Reactions
Xingmei Liu Yuwei Wang Liquan Fan Weichao Zhang Weiyan Cao Xianxin Han Xijun Liu Hongge Jia 《Molecules (Basel, Switzerland)》2022,27(4)
The development of non-precious metal catalysts with excellent bifunctional activities is significant for air–metal batteries. ABO3-type perovskite oxides can improve their catalytic activity and electronic conductivity by doping transition metal elements at B sites. Here, we develop a novel Sm0.5Sr0.5Co1−xNixO3−δ (SSCN) nanofiber-structured electrocatalyst. In 0.1 M KOH electrolyte solution, Sm0.5Sr0.5Co0.8Ni0.2O3−δ (SSCN82) with the optimal Co: Ni molar ratio exhibits good electrocatalytic activity for OER/ORR, affording a low onset potential of 1.39 V, a slight Tafel slope of 123.8 mV dec−1, and a current density of 6.01 mA cm−2 at 1.8 V, and the ORR reaction process was four-electron reaction pathway. Combining the morphological characteristic of SSCN nanofibers with the synergistic effect of cobalt and nickel with a suitable molar ratio is beneficial to improving the catalytic activity of SSCN perovskite oxides. SSCN82 exhibits good bi-functional catalytic performance and electrochemical double-layer capacitance. 相似文献
13.
14.
Bifunctional electrocatalysts play a key role in the performance of rechargeable metal-air batteries. Herein, we report a hybrid catalyst, Ag1.8Mn8O16/rGO, self-assembled by Ag1.8Mn8O16 nanorods and reduced graphene oxide (rGO) nanosheets through electrostatic attraction. The hybrid catalyst exhibits a better oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) activity than commercial Pt/C in alkaline medium. When employed as an air-cathode catalyst in Zn-air cells, the hybrids enabled higher and more stable output voltage and better durability of the cells, benefitting from the improved electrode conductivity, larger surface area, and synergetic coupling as a result of its high structural integrity. 相似文献
15.
16.
Chi Zhang Dr. Chen Zhang Yunchao Xie Jheng-Wun Su Dr. Xiaoqing He John D. Demaree Mark H. Griep Prof. Jerry L. Atwood Prof. Jian Lin 《Chemistry (Weinheim an der Bergstrasse, Germany)》2019,25(16):4036-4039
An iron oxide decorated nickel iron alloy nanoparticle/porous graphene hybrid exhibits high electrocatalytic activity and excellent durability toward oxygen evolution reaction (OER). It displays a low overpotential of 274 mV at 10 mA cm−2, and low Tafel slope of 37 mV dec−1, showing a superior performance to the state-of-the-art RuO2 OER electrocatalyst. 相似文献
17.
Non-noble metal-based bifunctional electrocatalysts may be a promising new resource for electrocatalytic water-splitting devices. In this work, transition metal (cobalt)-incorporated graphitic carbon nitride was synthesized and fabricated in electrodes for use as bifunctional catalysts. The optimum catalytic activity of this bifunctional material for the hydrogen evolution reaction (HER), which benefitted at a cobalt content of 10.6 wt%, was promoted by the highest surface area and conductivity. The activity achieved a minimum overpotential of ~85 mV at 10 mA/cm2 and a Tafel slope of 44.2 mV/dec in an acidic electrolyte. These values of the HER were close to those of a benchmark catalyst (platinum on carbon paper electrode). Moreover, the kinetics evaluation at the optimum catalyst ensured the catalyst flows (Volmer–Heyrovsky mechanism), indicating that the adsorption step is rate-determining for the HER. The activity for the oxygen evolution reaction (OER) indicated an overpotential of ~530 mV at 10 mAcm−2 and a Tafel slope of 193.3 mV/dec, which were slightly less or nearly the same as those of the benchmark catalyst. Stability tests using long-term potential cycles confirmed the high durability of the catalyst for both HER and OER. Moreover, the optimal bifunctional catalyst achieved a current density of 10 mAcm−2 at a cell voltage of 1.84 V, which was slightly less than that of the benchmark catalyst (1.98 V). Thus, this research reveals that the present bifunctional, non-noble metallic electrocatalyst is adequate for use as a water-splitting technology in acidic media. 相似文献
18.
Jie Yu Dr. Jaka Sunarso Yinlong Zhu Xiaomin Xu Prof. Ran Ran Prof. Wei Zhou Prof. Zongping Shao 《Chemistry (Weinheim an der Bergstrasse, Germany)》2016,22(8):2719-2727
Increasing energy demands have stimulated intense research activity on cleaner energy conversion such as regenerative fuel cells and reversible metal–air batteries. It is highly challenging but desirable to develop low‐cost bifunctional catalysts for both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), the lack of which is currently one of the major limiting components towards commercialization of these technologies. Here, we have conducted a systematic study on the OER and ORR performances of the Ruddlesden–Popper family of Lan+1NinO3n+1 (n=1, 2, 3, and ∞) in an alkaline medium for the first time. It is apparent that the Ni?O bond lengths and the hyperstoichiometric oxides in the rock‐salt layers correlate with the ORR activities, whereas the OER activities appear to be influenced by the OH? content on the surface of the compounds. In our case, the electronic configuration fails to predict the electrocatalytic activity of these compounds. This work provides guidelines to develop new electrocatalysts with improved performances. 相似文献
19.
A Universal and Facile Way for the Development of Superior Bifunctional Electrocatalysts for Oxygen Reduction and Evolution Reactions Utilizing the Synergistic Effect 下载免费PDF全文
Yinlong Zhu Dr. Chao Su Xiaomin Xu Dr. Wei Zhou Prof. Ran Ran Prof. Zongping Shao 《Chemistry (Weinheim an der Bergstrasse, Germany)》2014,20(47):15533-15542
Increasing energy demands have stimulated intense research activities on reversible electrochemical conversion and storage systems with high efficiency, low cost, and environmental benignity. It is highly challenging but desirable to develop efficient bifunctional catalysts for both the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). A universal and facile method for the development of bifunctional electrocatalysts with outstanding electrocatalytic activity for both the ORR and OER in alkaline medium is reported. A mixture of Pt/C catalyst with superior ORR activity and a perovskite oxide based catalyst with outstanding OER activity was employed in appropriate ratios, and prepared by simple ultrasonic mixing. Nanosized platinum particles with a wide range of platinum to oxide mass ratios was realized easily in this way. The as‐formed Pt/C–oxide composites showed better ORR activity than a single Pt/C catalyst and better OER activity than a single oxide to bring about much improved bifunctionality (ΔE is only ≈0.8 V for Pt/C–BSCF; BSCF=Ba0.5Sr0.5Co0.8Fe0.2O3?δ), due to the synergistic effect. The electronic transfer mechanism and the rate‐determining step and spillover mechanism were two possible origins of such a synergistic effect. Additionally, the phenomenon was found to be universal, although the best performance could be reached at different platinum to oxide mass ratios for different oxide catalysts. This work thus provides an innovative strategy for the development of new bifunctional electrocatalysts with wide application potentials in high‐energy and efficient electrochemical energy storage and conversion. 相似文献
20.
N,P‐Codoped Carbon Networks as Efficient Metal‐free Bifunctional Catalysts for Oxygen Reduction and Hydrogen Evolution Reactions 下载免费PDF全文
Dr. Jintao Zhang Prof. Liangti Qu Prof. Gaoquan Shi Jiangyong Liu Prof. Jianfeng Chen Prof. Liming Dai 《Angewandte Chemie (International ed. in English)》2016,55(6):2230-2234
The high cost and scarcity of noble metal catalysts, such as Pt, have hindered the hydrogen production from electrochemical water splitting, the oxygen reduction in fuel cells and batteries. Herein, we developed a simple template‐free approach to three‐dimensional porous carbon networks codoped with nitrogen and phosphorus by pyrolysis of a supermolecular aggregate of self‐assembled melamine, phytic acid, and graphene oxide (MPSA/GO). The pyrolyzed MPSA/GO acted as the first metal‐free bifunctional catalyst with high activities for both oxygen reduction and hydrogen evolution. Zn–air batteries with the pyrolyzed MPSA/GO air electrode showed a high peak power density (310 W g?1) and an excellent durability. Thus, the pyrolyzed MPSA/GO is a promising bifunctional catalyst for renewable energy technologies, particularly regenerative fuel cells. 相似文献