首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ginsenoside Rg1 is a valuable bioactive molecule but its high polarity and low concentration in complex mixtures makes it a challenge to separate Ginsenoside Rg1 from other saponins with similar structures, resulting in low extraction efficiency. The successful development of effective Rg1 molecularly imprinted polymers that exhibit high selectivity and adsorption may offer an improved method for the enrichment of active compounds. In this work, molecularly imprinted polymers were prepared with two different methods, precipitation polymerization or surface imprinted polymerization. Comparison of the adsorption abilities showed higher adsorption of the surface molecularly imprinted polymers prepared by surface imprinted polymerization, 46.80 mg/g, compared to the 27.74 mg/g observed for the molecularly imprinted polymers prepared by precipitation polymerization. Therefore, for higher adsorption of the highly polar Rg1, surface imprinted polymerization is a superior technique to make Rg1 molecularly imprinted polymers. The prepared surface molecularly imprinted polymers were tested as a solid‐phase extraction column to directionally enrich Rg1 and its analogues from ginseng tea and total ginseng extracts. The column with surface molecularly imprinted polymers showed higher enrichment efficiency and better selectivity than a C18 solid‐phase extraction column. Overall, a new, innovative method was developed to efficiently enrich high‐polarity bioactive molecules present at low concentrations in complex matrices.  相似文献   

2.
The method for preparation of molecularly imprinted monolithic stationary phase has been improved to achieve liquid chromatographic separation of enantiomers and diastereomers. By adopting low polar porogenic solvents of toluene and dodecanol and optimal polymerization conditions, the molecularly imprinted monolithic stationary phases with good flow-through properties and high resolution were prepared. Enantiomers of amino acid derivatives and diastereomers of cinchona alkaloids were completely resolved using the monolithic stationary phases. The influence of porogenic composition, monomer-template ratio and polymerization conditions on the chromatographic performance was investigated. Some chromatographic conditions such as the composition of the mobile phase and the temperature were characterized. Scanning electron microscopy showed that the molecularly imprinted monolithic stationary phase has a large through-pore structure to allow the mobile phase to flow through the column at very low backpressure. Accelerated separations of enantiomers and diastereomers were therefore achieved at elevated flow rates. Finally, the chiral recognition performance of the prepared stationary phase in aqueous media was investigated. Hydrophobic interaction, and ionic and/or hydrogen bonding interactions were proposed to be responsible for the recognition mechanism.  相似文献   

3.
Molecularly imprinted composite materials were evaluated as chiral stationary phases in capillary electrochromatography (CEC). These consisted of spherical silica particles of different sizes and of different porosities, containing a surface-immobilized layer of molecularly imprinted polymer (MIP) targeted to bind L-phenylalanine anilide. Fused silica capillaries were packed over a length of 8.5 cm, using a pneumate amplification pump, and the stationary phase thus obtained was tested with respect to its electrochromatographic performance. The electroendosmotic flow (EOF) mobility was evaluated with respect to the content of grafted polymer, as well as the ionic strength and the acetonitrile content of the electrolyte. Moreover, the influence of the layer thickness and of the stationary phase porosity on the performance and on the sample load capacity was investigated. The packings exhibited different relative efficiencies for the two enantiomers. The results were discussed in terms of differencies in accessibility to the binding sites of the packings and of the mechanism of EOF generation. In the wide context of the different approaches so far proposed for MIP stationary phases in CEC, these materials can be a good alternative, worthy of further development and application, not restricted to chiral separations.  相似文献   

4.
Covalent organic polymers are an emerging class of amorphous microporous materials that have raised increasing concerns in analytical chemistry due to their unique structural and surface chemical properties. However, the application of covalent organic polymers as mixed-mode stationary phases in chromatographic separations has rarely been reported. Herein, novel spherical silica hydroxyl-functionalized covalent organic polymer composites were successfully prepared via a layer-by-layer approach. The structure and morphology of the materials were carefully characterized by elemental analysis, Fourier-transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray diffraction, thermogravimetric analysis, Brunauer-Emmett-Teller, and contact angle measurements. Baseline separations of various alkylbenzenes, polycyclic aromatic hydrocarbons, and nucleosides and bases were achieved on the prepared stationary phase under reversed-phase/hydrophilic interaction mode. The column efficiencies of 23 853 and 36 580 plates/m were obtained for butylbenzene and uracil, respectively, and the relative standard deviation of the retention time for continuous injections was less than 1.38% (n = 10), suggesting satisfactory column efficiency and repeatability. Additionally, this novel stationary phase realized the complete separation of the endocrine-disrupting chemicals in river water. This work affords a new route for synthesizing covalent organic polymers-based mixed-mode stationary phase and further reveals their great potential in chromatographic separation.  相似文献   

5.
Molecular imprinting of cis‐diol functionalized agents via boronate affinity interaction has been usually performed using nanoparticles as a support which cannot be utilized as a stationary phase in continuous microcolumn applications. In this study, monodisperse‐porous, spherical silica particles in the micron‐size range, with bimodal pore diameter distribution were selected as a new support for the synthesis of a molecularly imprinted boronate affinity sorbent, using a cis‐diol functionalized agent as the template. A specific surface area of 158 m2/g was achieved with the imprinted sorbent by using monodisperse‐porous silica microspheres containing both mesoporous and macroporous compartments as the support. High porosity originating from the macroporous compartment and sufficiently high particle size provided good column permeability to the imprinted sorbent in microcolumn applications. The mesoporous compartment provided a large surface area for the parking of imprinted molecules while the macroporous compartment facilitated the intraparticular diffusion of imprinted target within the microsphere interior. A microfluidic boronate affinity system was first constructed by using molecularly imprinted polymeric shell coated monodisperse‐porous silica microspheres as a stationary phase. The synthetic route for the imprinting process, the reversible adsorption/ desorption behavior of selected target and the selectivity of imprinted sorbent in both batch and microfluidic boronate affinity chromatography systems are reported.  相似文献   

6.
A new generation of extremely acid stable "hyper-crosslinked" (HC) phases have been developed with good plate counts for basic drug separations. In our previous work, we successfully developed an approach for synthesizing HC stationary phases on silica substrates using aluminum trichloride catalyzed Friedel-Crafts (F-C) chemistry to improve the stability of silica-based RPLC stationary phases at low pH. However, the performance of basic analytes on these HC phases under acidic conditions was unusually poor compared to that of conventional silica-based C18 phases. The effects of the specific F-C catalysts used and the specific silica substrate on the chromatographic properties of HC phases have been studied. Modified synthetic strategies that give both good observed plate counts for basic analytes under acidic conditions and very good low pH stability without compromising other chromatographic properties of the hyper-crosslinked phases have been developed. Replacement of aluminum trichloride with tin tetrachloride as the catalyst for the F-C chemistry and use of a very high purity silica result in significantly improved plate counts for basic analytes. In formic acid buffered mobile phases, which are highly compatible with electrospray ionization LC-MS, basic analytes showed much better performance on the tin tetrachloride catalyzed HC phases than on any conventional commercial phase tested. The tin tetrachloride catalyzed HC phase is as stable as the original aluminum trichloride catalyzed HC phases, and much more stable than the bench mark acid stable commercial phase.  相似文献   

7.
Molecular imprinting technology is a well-established technique for the obtainment of tailor-made polymers, so-called molecularly imprinted polymers, with a predetermined selectivity towards a target analyte or structurally related compounds. Accordingly, molecularly imprinted polymers are considered excellent materials for sample preparation providing unprecedented selectivity to analytical methods. However, the use of molecularly imprinted polymers in sample preparation still presents some shortcomings derived from the synthesis procedure itself limiting its general applicability. In this regard, molecularly imprinted polymers use to display binding sites heterogeneity and slow diffusion mass transfer of analytes to the imprinted sites affecting their overall performance. Besides, the performance of molecularly imprinted polymers in organic solvents is excellent, but their selective binding ability in aqueous media is considerably reduced. Accordingly, the present review pretends to provide an updated overview of the recent advances and trends of molecularly imprinted polymers-based extraction, focusing on those strategies proposed for the improvement of mass transfer and selective recognition in aqueous media. Besides, with the progressive implementation of Green Chemistry principles, the different steps and strategies for the preparation of molecularly imprinted polymers are reviewed from a green perspective.  相似文献   

8.
New zwitterionic stationary phases were synthesized by covalently bonding 3-P,P-diphenylphosphonium-propylsulfonate to silica gel. The resulting materials possess both a negatively charged sulfonate group and a positively charged quaternary phosphonium group, which means that there is no net charge over a wide pH range. The retention mechanism and chromatographic behavior of polar solutes under HILIC conditions were studied on these zwitterionic phases. Compared to the commercial ZIC-HILIC column and a bare silica gel stationary phase, the newly synthesized zwitterionic stationary phases provided greater retention, higher peak efficiency and better peak symmetry in the HILIC mode. The analytes examined included: β-blockers, nucleic acid bases and nucleosides, salicylic acid and its analogues, and water soluble vitamins. Factors, such as the type of organic modifiers, solvent composition, pH and the buffer concentration of the mobile phase, have been considered as potential variables for controlling the chromatographic retention of polar analytes.  相似文献   

9.
亲水作用液相色谱法(HILIC)是一种用于改善强极性物质的保留和分离选择性的方法,广泛应用于药物分析、代谢组学、蛋白质组学等领域.该文利用农药分子与皂苷成分在HILIC上的保留行为差异,开发了一种农药残留脱除方法.以市售高纯人参提取物为例,该文评价了农药分子和人参皂苷在亲水色谱柱上的保留行为,并考察了上样量、淋洗体积、...  相似文献   

10.
A sol-gel chemistry-based polymer coating approach was developed for the preparation of a novel polysiloxane-coated silica stationary phase for capillary liquid chromatography. SE-30, a commercial polysiloxane stationary phase used in gas chromatography, was incorporated into the properly designed sol solution. Then the sol-gel mixture was introduced into a silica gel-packed capillary column by pressure. A thin film of sol-gel SE-30-coating is chemically bonded to the surface of silica gel particles by hydrolytic polycondensation under mild conditions without any free radical cross-linking procedures, therefore the sol-gel approach offers a simple and effective pathway to create a hybrid polymer-coated silica stationary phase. Various factors affecting column making were optimized and discussed in this report. The resulting stationary phase showed good permeability, mechanical robustness, high durability to alkaline mobile phase and satisfactory chromatographic performance in separations of polar and non-polar aromatic compounds. Linear solvation energy relationships (LSERs) studies indicate that the stationary phase has a reversed-phased character with SE-30 providing chromatographic functionality. The solute size and the solute hydrogen bond ability are major factors that principally govern the retention of test solutes.  相似文献   

11.
A new extraction method for ginsenosides from ginseng roots, ginseng leaves and ginseng drug preparations by Sep-Pak C18 cartridges has been studied. Ginsenoside extraction by Sep-Pak cartridges is a rapid, efficient, reproducible method. In addition, the extracts were analyzed by high performance thin layer chromatography (HPTLC) and reverse phase high performance liquid chromatography (HPLC). The major components of ginseng saponins were effectively separated using an ODS-120T column.  相似文献   

12.
Silica particles have been used as supports for the preparation of three different propazine-imprinted polymer formats. First format refers to grafting of thin films of molecularly imprinted polymers (MIPs) using an immobilised iniferter-type initiator (inif-MIP). The other two new formats were obtained by complete filling of the silica pores with the appropriate polymerisation mixture leading to a silica-MIP composite material (c-MIP) followed by the dissolution of the silica matrix resulting in spherical MIP beads (dis-MIP). These techniques offer a mean of fine-tuning the particle morphology of the resulting MIP particles leading to enhanced capacity in chromatographic applications. Porous silica (specific surface area S = 380 m2 g−1, particle size ps = 10 μm, pore volume Vp = 1.083 ml g−1 and pore diameter dp = 10.5 nm), methacrylic acid and ethylenglycol dimethacrylate were used for the preparation of the materials. All the MIP formats imprinted with propazine have been characterised by elemental analysis, FT-IR spectroscopy, nitrogen adsorption and scanning electron microscopy. Further, the materials were assessed as stationary phases in HPLC. Capacity factors, imprinting factors and theoretical plate numbers were calculated for propazine and other related triazines in order to compare the chromatographic properties of the three different stationary phases. For the inif-MIPs the column efficiency depended strongly on the amount of grafted polymer. Thus, only the polymers grafted as thin films of ca. 1.3 nm average thickness show imprinting effects and the highest column efficiency giving plate numbers (N) of 1600 m−1 for the imprinted propazine. The performance of the c-MIP stationary phase decreases as result of the complete pore filling after polymerisation and increases again after the removal of the silica matrix due to a better mass transfer in the porous mirror-image resulting polymer. From this study can be concluded that the inif-MIP shows the best efficiency for use as stationary phase in HPLC for the separation of triazinic herbicides.  相似文献   

13.
An octadecylsilane functionalized graphene oxide/silica stationary phase was fabricated by assembling graphene oxide onto the silica particles through an amide bond and subsequent immobilization of octadecylsilane. The chromatographic properties of the stationary phase were investigated by reversed-phase chromatography with alkylbenzenes, polycyclic aromatic hydrocarbons, amines, and phenolic compounds as the analytes. All the compounds achieved good separation on the column. The comparison between a C18 commercial column and the new stationary phase indicated that the existence of π-electron system of graphene oxide allows π-π interaction between analyte and octadecylsilane functionalized graphene oxide/silica stationary phase except for hydrophobic interaction, while only hydrophobic interaction presented between analyte and C18 commercial column. This suggests that some analytes can be better separated on the octadecylsilane functionalized graphene oxide/silica column.  相似文献   

14.
Estrone molecularly imprinted polymers were synthesized through the self‐polymerization of dopamine on the surface of silica gels, which had the characteristics of mild polymerization conditions, simple reaction procedure and good specific recognition ability for estrone. The estrone molecularly imprinted polymers were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, elemental analysis and nitrogen adsorption–desorption tests. The characterization confirmed that the imprinted polymers were successfully grafted on the surface of silica gels. Through investigating the adsorption performance, the prepared estrone molecularly imprinted polymers exhibited high adsorption capacity, fast mass transfer, as well as excellent selectivity toward estrone. The estrone molecularly imprinted polymers as the solid‐phase extraction adsorbent coupled with high‐performance liquid chromatography was developed to determine estrone from the milk samples. The developed estrone molecularly imprinted polymer solid‐phase extraction with high‐performance liquid chromatography method exhibited satisfactory specificity, precision, accuracy and good linearity relationship in the range of 0.2–20 μg/mL. The developed method is simple, fast, effective and high specificity method and it provides a new method to detect the residues of estrone in animal foods.  相似文献   

15.
A novel carboxyl‐bonded silica stationary phase was prepared by “thiol‐ene” click chemistry. The resultant Thiol‐Click‐COOH phase was evaluated under hydrophilic interaction liquid chromatography (HILIC) mobile phase conditions. A comparison of the chromatographic performance of Thiol‐Click‐COOH and pure silica columns was performed according to the retention behaviors of analytes and the charged state of the stationary phases. The results indicated that the newly developed Thiol‐Click‐COOH column has a higher surface charge and stronger hydrophilicity than the pure silica column. Furthermore, the chromatographic behaviors of five nucleosides on the Thiol‐Click‐COOH phase were investigated in detail. Finally, a good separation of 13 nucleosides and bases, and four water‐soluble vitamins was achieved.  相似文献   

16.
The retention characteristics of a silicon oxynitride stationary phase for carbohydrate separation were studied in hydrophilic interaction chromatography mode. Four saccharides including mono‐, di‐, and trisaccharides were employed to investigate the effects of water content and buffer concentration in the mobile phase on hydrophilic interaction liquid chromatography retention. For the tested saccharides, the silicon oxynitride column demonstrated excellent performance in terms of separation efficiency, hydrophilicity, and interesting separation selectivity for carbohydrates compared to the bare silica stationary phase. Finally, the silicon oxynitride hydrophilic interaction liquid chromatography column was employed in the separation of complex samples of fructooligosaccharides, saponins, and steviol glycoside from natural products. The resulting chromatograms demonstrated good separation efficiency and longer retention compared with silica, which further confirmed the advantages and potential application of silicon oxynitride stationary phase for hydrophilic interaction liquid chromatography separation.  相似文献   

17.
In this work, two different surface imprinting formats have been evaluated using thiabendazole (TBZ) as model template. The first format is a thin film of molecularly imprinted polymer (MIP) grafted from preformed silica particles using an immobilized iniferter‐type initiator (inif‐MIP). The second format is molecularly imprinted polymer microspheres with narrow particle size distribution and core‐shell morphology prepared by precipitation polymerization in a two‐step procedure. For the latter format, polymer microspheres (the core particles) were obtained by precipitation polymerization of divinylbenzene‐80 (DVB‐80) in acetonitrile. Thereafter, the core particles were used as seed particles in the synthesis of MIP shells by copolymerization of DVB‐80 and methacrylic acid in the presence of TBZ in a mixed solvent porogen (acetonitrile/toluene). The materials were characterized by elemental microanalysis, nitrogen sorption porosimetry and scanning (and transmission) electron microscopy. Thereafter, the imprinted materials were assessed as stationary phases in liquid chromatography. From this study it can be concluded that grafted MIP beads can be obtained in a simple and direct manner, consuming only a fraction of the reagents used typically to prepare imprinted particles from a monolithic imprinted polymer. Such materials can be used in the development of in‐line molecularly imprinted solid‐phase extraction methods. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1058–1066, 2010  相似文献   

18.
Zhang G  Li Y  Fang Y  Han N  Xu B 《Electrophoresis》2003,24(4):693-699
Octadecyl silyl silica (ODS) phase coated with immobilized polysiloxanes (OV1701, SE-54, SE-30) were synthesized, their characteristics as capillary electrochromatography (CEC) column packing materials were studied. It was found that, although the polysiloxane coatings were different in polarity, the resulting packing materials showed the highest efficiencies when the respective coating ratios (polysiloxane:ODS, w/w) were all 20-30%. As expected, packing materials coated with different polysiloxanes resulted in different selectivity on solute pairs. Separations on these stationary phases were studied with different factors such as pH values and acetonitrile contents of the mobile phases. It was found that all these kind of stationary phases could resist basic mobile phase with a pH value as high as 11.6. Tests were made to analyze polar, basic drugs with CEC using the stationary phases.  相似文献   

19.
张冰雪  彭博  袁黎明 《化学通报》2021,84(3):267-272
本文使用堆砌硅珠法以硅溶胶为原料、苏氨酸(L-Thr)为手性源构造手性环境,制备具有手性分离能力的全无机介孔手性硅胶球,对其进行元素分析、红外光谱法分析、透射电镜、扫描电镜和氮气吸附等表征,采用HPLC法探究无机介孔硅胶球制备的固定相对手性异构体和苯系位置异构体的拆分性能,成功分离了9对外消旋化合物和8种苯系位置异构体...  相似文献   

20.
Fluorescent molecularly imprinted polymer-coated CdSe/ZnS quantum dots were prepared in an efficient one-step synthesis. Their application as fluorescent nanoparticles for the direct quantification of cholesterol in milk was characterized. The quantum dots were used as cores to produce fluorescence. The molecularly imprinted polymer shells provided specific binding sites for cholesterol. The system exhibited good linearity for cholesterol from 0.5 to 150?µg?mL?1, a low detection limit of 0.15?µg?mL?1, and acceptable reproducibility with a relative standard deviation of 4.2% for six replicates. The molecularly imprinted polymer-coated quantum dots were used to determine cholesterol in fortified milk. Recoveries were from 87.0 to 105.2% and a possible mechanism is proposed. The fluorescent molecularly imprinted polymer-coated quantum dots exhibited excellent selectivity and provide a simple, rapid, selective, and effective analytical approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号