首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This work introduces original explicit solutions for the elastic fields radiated by non-uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form of time-integral representations in which acceleration-dependent contributions are explicitly separated out. These solutions are obtained by applying an isotropic regularization procedure to distributional expressions of the elastodynamic fields built on the Green tensor of the Navier equation. The obtained regularized field expressions are singularity-free, and depend on the dislocation density rather than on the plastic eigenstrain. They cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A numerical method of computation is discussed, that rests on discretizing motion along an arbitrary path in the plane transverse to the dislocation, into a succession of time intervals of constant velocity vector over which time-integrated contributions can be obtained in closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the Tamm problem, where fields induced by a dislocation accelerated from rest beyond the longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the proposed expressions produce Mach cones, the dynamic build-up and decay of which is illustrated by means of full-field calculations.  相似文献   

2.
以压电各向异性弹性介质广义平面变形的Stroh一般解为基础,采用复变函数方法(即保角变换技术),研究了条带域介质内物理场的封闭形式解,求得了介质内某一点同时存在广义线位错和广义线力作用时的简单明确解,它就是边界元法中的Green函数,还分析了极化介质表面的电荷分布情况,并进而讨论了线电荷q与边界分布电荷间的库仑力问题,文中结果不仅适用于平面或反平面变形问题,而且也适用于两者耦合的二维变形问题。  相似文献   

3.
The three-dimensional Green’s functions due to a point force in composite laminates are solved by using generalized Stroh formalism and two-dimensional Fourier transforms. Each layer of the composite is generally anisotropic and linearly elastic. The interfaces between different layers are parallel to the top and bottom surfaces of the composite and are perfectly bonded. The Green’s functions of point forces applied at the free surface, interface, and in the interior of a layer are derived in the Fourier transformed domain respectively. The surfaces are imposed by a proportional spring-type boundary condition. The spring-type condition may be reduced to traction-free, displacement-fixed, and mirror-symmetric conditions. Numerical examples are given to demonstrate the validity and elegance of the present formulation of three-dimensional point-force Green’s functions for composite laminates.  相似文献   

4.
The Stroh formalism is a powerful and elegant mathematical method developed for the analysis of the equations of anisotropic elasticity. The purpose of this exposition is to introduce the essence of this formalism and demonstrate its effectiveness in both static and dynamic elasticity. The equations of elasticity are complicated, because they constitute a system and, particularly for the anisotropic cases, inherit many parameters from the elasticity tensor. The Stroh formalism reveals simple structures hidden in the equations of anisotropic elasticity and provides a systematic approach to these equations. This exposition is divided into three chapters. Chapter 1 gives a succinct introduction to the Stroh formalism so that the reader could grasp the essentials as quickly as possible. In Chapter 2 several important topics in static elasticity, which include fundamental solutions, piezoelectricity, and inverse boundary value problems, are studied on the basis of the Stroh formalism. Chapter 3 is devoted to Rayleigh waves, for long a topic of utmost importance in nondestructive evaluation, seismology, and materials science. There we discuss existence, uniqueness, phase velocity, polarization, and perturbation of Rayleigh waves through the Stroh formalism.

The Table of Contents and Index are also provided as Electronic Supplementary Material for online readers at doi:   相似文献   

5.
In this paper, we obtain Green’s functions of two-dimensional (2D) piezoelectric quasicrystal (PQC) in half-space and bimaterials. Based on the elastic theory of QCs, the Stroh formalism is used to derive the general solutions of displacements and stresses. Then, we obtain the analytical solutions of half-space and bimaterial Green’s functions. Besides, the interfacial Green’s function for bimaterials is also obtained in the analytical form. Before numerical studies, a comparative study is carried out to validate the present solutions. Typical numerical examples are performed to investigate the effects of multi-physics loadings such as the line force, the line dislocation, the line charge, and the phason line force. As a result, the coupling effect among the phonon field, the phason field, and the electric field is prominent, and the butterfly-shaped contours are characteristic in 2D PQCs. In addition, the changes of material parameters cause variations in physical quantities to a certain degree.  相似文献   

6.
Precursor decay in plate impact experiments on single crystals is re-examined from the viewpoint of the elastodynamics of moving dislocations. Superposition of solutions for many dislocations set in motion by an incident plane wave is used to relate the decay of the wave amplitude at the front of the plane wave to the density and velocity of dislocations at the wavefront. The resulting precursor decay relation is the same as the one derived from an elastic/visco-plastic model of the material, except for a small correction due to differences between the effects of forward and backward propagating dislocations. Motivated by this added support for the validity of the precursor decay equation, the values used for the quantities in this equation are re-examined. Recent experimental results and the elastodynamics analysis are interpreted as indicating that the commonly-used values of dislocation velocity are probably satisfactory, but that the values used for dislocation density are several orders of magnitude too small near the lapped surfaces of the crystal. These large dislocation densities are identified as the probable dominant cause of the lower-than-predicted precursor amplitudes that are recorded in experiments. More accurate experimental data and inclusion of the non-linear elasticity effects are essential in determining whether or not the observed precursor decay in the bulk of the specimen can be explained by the motion of dislocations present initially. Calculations of energy radiated from screw and edge dislocations that start from rest and move thereafter at constant velocity confirm that dislocation drag forces due to continuum elasticity effects are small for dislocation velocities less than, say, 80% of the elastic shear wave speed. At supersonic speeds the continuum drag effects become so large that sustained supersonic motion of dislocations appears unlikely.  相似文献   

7.
The paper presents studies on the Green’s function for thermomagnetoelectroelastic medium and its reduction to the contour integral. Based on the previous studies the thermomagnetoelectroelastic Green’s function is presented as a surface integral over a half-sphere. The latter is then reduced to the double integral, which inner integral is evaluated explicitly using the complex variable calculus and the Stroh formalism. Thus, the Green’s function is reduced to the contour integral. Since the latter is evaluated over the period of the integrand, the paper proposes to use trapezoid rule for its numerical evaluation with exponential convergence. Several numerical examples are presented, which shows efficiency of the proposed approach for evaluation of Green’s function in thermomagnetoelectroelastic anisotropic solids.  相似文献   

8.
A method to deal with the two-dimensional transient problem of a line force or dislocation in an anisotropic elastic half-space is developed. The proposed formulation is similar to Stroh’s formalism for anisotropic elastostatics in that the two-dimensional anisotropic elastodynamic problem is cast into a six-dimensional eigenvalue problem and the solution is expressed in terms of the eigenvalues and eigenvectors. An analytic solution is obtained without performing integral transforms. Numerical examples are presented for a silicon half-space subjected to a line force or dislocation.  相似文献   

9.
There are large classes of materials problems that involve the solutions of stress, displacement, and strain energy of dislocation loops in elastically anisotropic solids, including increasingly detailed investigations of the generation and evolution of irradiation induced defect clusters ranging in sizes from the micro- to meso-scopic length scales. Based on a two-dimensional Fourier transform and Stroh formalism that are ideal for homogeneous and layered anisotropic solids, we have developed robust and computationally efficient methods to calculate the displacement fields for circular and polygonal dislocation loops. Using the homogeneous nature of the Green tensor of order −1, we have shown that the displacement and stress fields of dislocation loops can be obtained by numerical quadrature of a line integral. In addition, it is shown that the sextuple integrals associated with the strain energy of loops can be represented by the product of a pre-factor containing elastic anisotropy effects and a universal term that is singular and equal to that for elastic isotropic case. Furthermore, we have found that the self-energy pre-factor of prismatic loops is identical to the effective modulus of normal contact, and the pre-factor of shear loops differs from the effective indentation modulus in shear by only a few percent. These results provide a convenient method for examining dislocation reaction energetic and efficient procedures for numerical computation of local displacements and stresses of dislocation loops, both of which play integral roles in quantitative defect analyses within combined experimental–theoretical investigations.  相似文献   

10.
The Stroh formalism is most elegant when the boundary conditions are simple, namely, they are prescribed in terms of traction or displacement. For mixed boundary conditions such as there for a slippery boundary, the concise matrix expressions of the Stroh formalism are destroyed. We present a generalized Stroh formalism which is applicable to a class of general boundary conditions. The general boundary conditions include the simple and slippery boundary conditions as special cases. For Green's functions for the half space, the general solution is applicable to the case when the surface of the half-space is a fixed, a free, a slippery, or other more general boundary. For the Griffith crack in the infinite space, the crack can be a slit-like crack with free surfaces, a rigid line inclusion (which is sometimes called an anticrack), or a rigid line with slippery surface or with other general surface conditions. It is worth mention that the modifications required on the Stroh formalism are minor. The generalized formalism and the final solutions look very similar to those of unmodified version. Yet the results are applicable to a rather wide range of boundary conditions.  相似文献   

11.
各向异性弹性力学一般边值问题的广义Stroh公式   总被引:1,自引:1,他引:1  
丁启财  王敏中 《力学学报》1993,25(3):283-301
当边值问题是简单的,即是应力边值问题时,Stroh公式是很有效的。对于混合边值问题,倒如滑动边界条件,Stroh公式中的简洁的矩阵表达式就失效了。我们提出了一个广义的Stroh公式,它可应用于一大类一般的边界条件。简单的边界条件和滑动边界条件是这一类一般边界条件的特殊情形。值得指出的是,这个关于Stroh公式所作的修正并不大。广义的公式和最后的解答看起来很类似于未修正的原公式和原来的解。然而这个修正却可应用于相当广的边界条件。  相似文献   

12.
Results of an experimental study of supersonic flow around truncated cones with cone half-angles of 20, 30, and 40°, performed at Mach numbers M = 2, 3, and 4 within the range of angles of attack up to 20°, are presented. A relationship is established between the emergence of an internal shock wave and the character of pressure distribution along the generatrix of the truncated cone. It is shown that the known boundaries of regimes obtained for axisymmetric flow around sharp and blunt cones can be used to predict flow regimes in the vertical plane of symmetry of the truncated cone at incidence.  相似文献   

13.
I.IntroductionItiswell'knownthatoneofthemostpowerfultoolsinlinearfieldtheoriesistheGreen'sfunction.Fore1asticity,considerableresearchcanbefoundintheliterature.However,theGreen'sfunctionforpiezoe1ectricityisratherlimitedduetotheanisotropyandelectromechanic…  相似文献   

14.
Thermal fields may exist in addition to mechanical loading, for example, due to short term exposure to fire. In this paper, the branching of cracks in the presence of combined thermal and mechanical loads is investigated for general anisotropic media by employing the theory of Stroh’s dislocation formalism, extended to thermo-elasticity in matrix notation. A general solution to the thermo-elastic crack problem for an anisotropic material under arbitrary loading is obtained in a compact form. Green’s functions are also presented for a thermal dislocation (heat vortex) and a conventional dislocation (or, referred as mechanical dislocation), which are formulated considering the cuts located at an arbitrary angle with respect to the x1 axis of the coordinate system (x1, x2, x3). Using the derived compact expressions, the interaction between the crack and the dislocation is studied and a closed form solution for this interaction is obtained. The branching portion of the thermo-elastic crack is modelled as a continuous distribution of dislocations. This problem is then converted into a set of singular integral equations. Numerical results are presented to illustrate the possible effects of thermal loading on the propagation of the branched crack.  相似文献   

15.
Wang  Fang  Ding  Tao  Han  Xueli  Lv  Lei 《Transport in Porous Media》2020,133(2):293-312

The dynamic responses of an anisotropic multilayered poroelastic half-space to a point load or a fluid source are studied based on Stroh formalism and Fourier transforms. Taking the boundary conditions and the continuity of the materials into consideration, the three-dimensional Green’s functions of generalized concentrated forces (force and fluid source) applied at the free surface, interface and in the interior of a layer are derived in the Fourier transformed domain, respectively. The actual solutions in the frequency domain can further be acquired by inverting the Fourier transform. Finally, numerical examples are carried out to verify the presented theory and discuss the Green’s fields due to three cases of a concentrated force or a fluid source applied at three different locations for an anisotropic multilayered poroelastic half-space.

  相似文献   

16.
An interface crack or delamination may often branch out of the interface in a laminated composite due to thermal stresses developing around the delamination/crack tip when the media is exposed to heat flow induced by environmental events such as a sudden short-duration fire. In this paper, the thermo-elastic problem of interface crack branching in dissimilar anisotropic bi-media is studied by using the theory of Stroh’s dislocation formalism, extended to thermo-elasticity in matrix notation. Based on the complex variable method and the analytical continuation principle, the thermo-elastic interface crack/delamination problem is examined and a general solution in compact form is derived for dissimilar anisotropic bi-media. A set of Green’s functions is proposed for the dislocations (conventional dislocation and thermal dislocation/heat vortex) in anisotropic bi-media. These functions may be more suitable than those which have appeared in the literature on addressing thermo-elastic interface crack branching in dissimilar anisotropic bi-materials. Using the contour integral method, a closed form solution to the interaction between the dislocations and the interface crack is obtained. Within the scope of linear fracture mechanics, the thermo-elastic problem of interface crack branching is then solved by modelling the branched portion as a continuous distribution of dislocations. The influence of thermal loading and thermal properties on the branching behavior is examined, and criteria for predicting interface crack branching are suggested, based on the extensive numerical results from the study of various cases.  相似文献   

17.
Eshelby’s problem of piezoelectric inclusions arises sometimes in exploiting the electromechanical coupling effect in piezoelectric media. For example, it intervenes in the nanostructure design of strained semiconductor devices involving strain-induced quantum dot (QD) and quantum wire (QWR) growth. Using the extended Stroh formalism, the present work gives a general analytical solution for Eshelby’s problem of two-dimensional arbitrarily shaped piezoelectric inclusions. The key step toward obtaining this general solution is the derivation of a simple and compact boundary integral expression for the eigenfunctions in the extended Stroh formalism applied to Eshelby’s problem. The simplicity and compactness of the boundary integral expression derived make it much less difficult to analytically tackle Eshelby’s piezoelectric problem for a large variety of non-elliptical inclusions. In the present work, explicit analytical solutions are obtained and detailed for all polygonal inclusions and for the inclusions characterized by Jordan’s curves and Laurent’s polynomials. By considering the piezoelectric material GaAs (110), the analytical solutions provided are illustrated numerically to verify the coincidence between different expressions, and to clarify the jump across the boundary of the inclusion and the singularity around the corner of the inclusion.  相似文献   

18.
By virtue of the Stroh formalism, we derive the exact closed-form solutions for the time-dependent two-dimensional Green's functions due to a line force and line dislocation in an anisotropic bimaterial with a viscous interface. We first reduce the boundary value problem to two coupled homogeneous first-order partial differential equations, which can be solved using a decoupling technique. The full-field expressions of the time-dependent displacements and stresses due to the line force and line dislocation interacting with the viscous interface are obtained.  相似文献   

19.
This paper presents an analysis of a single vertical crack and periodically distributed vertical cracks in an epitaxial film on a semi-infinite substrate where the cracks penetrate into the substrate. The film and substrate materials have different anisotropic elastic constants, necessitating Stroh formalism in the analysis. The misfit strain due to the lattice mismatch between the film and the substrate serves as the driving force for crack formation. The solution for a dislocation in an anisotropic trimaterial is used as a Green function, so that the cracks are modeled as the continuous distributions of dislocations to yield the singular integral equations of Cauchy-type. The Gauss–Chebyshev quadrature formula is adopted to solve the singular integral equations numerically. Energy arguments provide the critical condition for crack formation, at which the cracks are energetically favorable configurations, in terms of the ratio of the penetration depth into the substrate to the film thickness, the ratio of the spacing of the periodic cracks to the film thickness, and the generalized Dundurs parameters between the film and substrate materials.  相似文献   

20.
A. Kuzmin 《Shock Waves》2016,26(6):741-747
This work addresses two- and three-dimensional turbulent flow in simple channels, modeling the air intakes of rectangular cross section. Flow regimes with a supersonic free stream and supersonic velocities at the throat or immediately downstream of the throat are considered. Bifurcations of the shock wave arising ahead of the cowl are studied numerically. Solutions of the Reynolds-averaged Navier–Stokes equations are obtained with a finite-volume solver of second-order accuracy on fine computational meshes. The solutions reveal jumps of the shock leg position with variations of the free-stream Mach number. The dependence of the shock position on the cowl slope and streamwise location of the throat is examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号