首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Stinging nettle (Urtica dioica L.) is a good source of biologically active compounds with proven beneficial health effects. This study aimed to investigate the effect of nettle herb supplementation on chemical composition, including the content of selected minerals and pigments, the in vitro glycemic response, and the cooking and sensory quality of extruded pasta. Tagliatelle-shaped pasta was produced under semi-technical scale by partial replacement of durum wheat semolina with 0, 1, 2, 3, 4, and 5% of lyophilized nettle. The partial substitution with freeze-dried nettle caused a statistically significant (p ≤ 0.05) increase in the content of minerals, especially calcium, iron, potassium, and magnesium in the products. The calcium content in the pasta fortified with 5%-addition of stinging nettle was 175.9 mg 100 g−1 and this concentration was 5.8 times higher than in the control sample. At the same time, high content of chlorophylls and carotenoids (237.58 µg g−1 and 13.35 µg g−1, respectively) was noticed. Enriching pasta with a 0–5% addition of stinging nettle resulted in a statistically significant (p ≤ 0.05) increase in the content of the total dietary fiber (TDF) (from 5.1 g 100 g−1 to 8.82 g 100 g−1) and the insoluble dietary fiber (IDF) (from 2.29 g 100 g−1 to 5.63 g 100 g−1). The lowest hydrolysis index of starch (HI = 17.49%) and the lowest glycemic index (GI = 49.31%) were noted for the pasta enriched with 3% nettle.  相似文献   

2.
In this study, methanol extracts (MEs) and essential oil (EO) of Angelica purpurascens (Avé-Lall.) Gill obtained from different parts (root, stem, leaf, and seed) were evaluated in terms of antioxidant activity, total phenolics, compositions of phenolic compound, and essential oil with the methods of 2,2-azino-bis(3ethylbenzo-thiazoline-6-sulfonic acid (ABTS•+), 2,2-diphenyl-1-picrylhydrazil (DPPH•) radical scavenging activities, and ferric reducing/antioxidant power (FRAP), the Folin–Ciocalteu, liquid chromatography−tandem mass spectrometry (LC−MS/MS), and gas chromatography-mass spectrometry (GC−MS), respectively. The root extract of A. purpurascens exhibited the highest ABTS•+, DPPH•, and FRAP activities (IC50: 0.05 ± 0.0001 mg/mL, IC50: 0.06 ± 0.002 mg/mL, 821.04 ± 15.96 µM TEAC (Trolox equivalent antioxidant capacity), respectively). Moreover, EO of A. purpurascens root displayed DPPH• scavenging activity (IC50: 2.95 ± 0.084 mg/mL). The root extract had the highest total phenolic content (438.75 ± 16.39 GAE (gallic acid equivalent), µg/mL)). Twenty compounds were identified by LC−MS/MS. The most abundant phenolics were ferulic acid (244.39 ± 15.64 μg/g extract), benzoic acid (138.18 ± 8.84 μg/g extract), oleuropein (78.04 ± 4.99 μg/g extract), and rutin (31.21 ± 2.00 μg/g extract) in seed, stem, root, and leaf extracts, respectively. According to the GC−MS analysis, the major components were determined as α-bisabolol (22.93%), cubebol (14.39%), α-pinene (11.63%), and α-limonene (9.41%) among 29 compounds. Consequently, the MEs and EO of A. purpurascens can be used as a natural antioxidant source.  相似文献   

3.
We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 μmoL·m−2·s−1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d−1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 μmol·m−2·s−1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 μmol·m−2·s−1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d−1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d−1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d−1 photoperiod and in Chinese kale microgreens under 16-h·d−1 photoperiod. In conclusion, the photoperiod of 14~16 h·d−1, and 90 μmol·m−2·s−1 and 70 μmol·m−2·s−1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.  相似文献   

4.
Plant derived fermented beverages have recently gained consumers’ interest, particularly due to their intrinsic functional properties and presence of beneficial microorganisms. Three variants containing 5%, 10%, and 15% (w/w) of sweet blue lupin (Lupinus angustifolius L. cv. “Boregine”) seeds were inoculated with kefir grains and incubated at 25 °C for 24 h. After processing, beverages were stored in refrigerated conditions (6 °C) for 21 days. Changes in microbial population, pH, bioactive compounds (polyphenolics, flavonoids, ascorbic acid), reducing sugars, and free amino acids were estimated. Additionally, viscosity, firmness, color, and free radicals scavenging properties were determined. Results showed that lactic acid bacteria as well as yeast were capable of growing well in the lupin matrix without any supplementation. During the process of refrigeration, the viability of the microorganisms was over the recommended minimum level for kefir products. Hydrolysis of polysaccharides as well as increase of free amino acids was observed. As a result of fermentation, the beverages showed excellent DPPH, ABTS, ·OH, and O2 radicals scavenging activities with a potential when considering diseases associated with oxidative stress. This beverages could be used as a new, non-dairy vehicle for beneficial microflora consumption, especially by vegans and lactose-intolerant consumers.  相似文献   

5.
Cucurbita moschata Duchesne (Cucurbitaceae) is a plant food highly appreciated for the content of nutrients and bioactive compounds, including polyphenols and carotenoids, which contribute to its antioxidant and antimicrobial capacities. The purpose of this study was to identify phenolic acids and flavonoids of Cucurbita moschata Duchesne using high-performance liquid chromatography–diode array detection–electrospray ionization tandem mass spectrometry (HPLC–DAD–ESI-MS) at different ripening stages (young, mature, ripened) and determine its antioxidant and antimicrobial activities. According to the results, phenolic acids and flavonoids were dependent on the maturity stage. The mature fruits contain the highest total phenolic and flavonoids contents (97.4 mg GAE. 100 g−1 and 28.6 mg QE. 100 g−1).A total of 33 compounds were identified. Syringic acid was the most abundant compound (37%), followed by cinnamic acid (12%) and protocatechuic acid (11%). Polyphenol extract of the mature fruits showed the highest antioxidant activity when measured by DPPH (0.065 μmol TE/g) and ABTS (0.074 μmol TE/g) assays. In the antimicrobial assay, the second stage of ripening had the highest antibacterial activity. Staphylococcus aureus was the most sensitive strain with an inhibition zone of 12 mm and a MIC of 0.75 mg L−1. The lowest inhibition zone was obtained with Salmonella typhimurium (5 mm), and the MIC value was 10 mg L−1.  相似文献   

6.
A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C–H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M−1 and detection limit: 19 μM) and Cr2O72− (Ksv: 12960 M−1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72− in aqueous media.  相似文献   

7.
The study’s purpose was to find and create a nourishing fruit juice made from avocado to suit nutritional and health demands. In this regard, the avocado juice was formulated using a statistical technique, and its biochemical and phytochemical characteristics were evaluated. Statistically formulated fruit juice was evaluated for its sensory characteristics, proximate composition, nutrients and vitamins, total phenols and flavonoids, and for its antioxidant ability, in addition to a shelf-life test. The optimal amount of all ingredients included in the mathematical model for the preparation of the juice was 150 g of Persea americana (Avocado) fruit pulp, 12.5 g of honey and 100 mL of water. In fact, the composition of avocado juice was found to have higher phenolic (910.36 ± 0.215 mg EAG g−1/mL) and flavonoid (56.32 ± 1.26 mg QE g−1/ mL) amounts. DPPH, ABTS and FRAP antioxidant assays tended to be high compared with a standard. The shelf-life analysis indicated that the processed avocado juice (V7) had a long shelf life. In view of all these merits, a statistically formulated recipe for avocado fruit juice was recommended for the formulation of the most preferred health drink.  相似文献   

8.
Apple trees (Malus domestica Borgh) are a rich source of dihydrochalcones, phenolic acids and flavonoids. Considering the increasing demand for these phytochemicals with health-benefitting properties, the objective of this study was to evaluate the profile of the main bioactive compounds—phloridzin, phloretin, chlorogenic acid and rutin—in apple tree bark, leaves, flower buds and twigs. The variety in the phenolic profiles of four apple tree cultivars was monitored during the vegetation period from March to September using chromatography analysis. Phloridzin, the major glycoside of interest, reached the highest values in the bark of all the tested cultivars in May (up to 91.7 ± 4.4 mg g−1 of the dried weight (DW), cv. ‘Opal’). In the leaves, the highest levels of phloridzin were found in cv. ‘Opal’ in May (82.5 ± 22.0 mg g−1 of DW); in twigs, the highest levels were found in cv. ‘Rozela’ in September (52.4 ± 12.1 mg g−1 of DW). In the flower buds, the content of phloridzin was similar to that in the twigs. Aglycone phloretin was found only in the leaves in relatively low concentrations (max. value 2.8 ± 1.4 mg g−1 of DW). The highest values of rutin were found in the leaves of all the tested cultivars (10.5 ± 2.9 mg g−1 of DW, cv. ‘Opal’ in September); the concentrations in the bark and twigs were much lower. The highest content of chlorogenic acid was found in flower buds (3.3 ± 1.0 mg g−1 of DW, cv. ‘Rozela’). Whole apple fruits harvested in September were rich in chlorogenic acid and phloridzin. The statistical evaluation by Scheffe’s test confirmed the significant difference of cv. ‘Rozela’ from the other tested cultivars. In conclusion, apple tree bark, twigs, and leaves were found to be important renewable resources of bioactive phenolics, especially phloridzin and rutin. The simple availability of waste plant material can therefore be used as a rich source of phenolic compounds for cosmetics, nutraceuticals, and food supplement preparation.  相似文献   

9.
Highly porous activated carbons were synthesized via the mechanochemical salt-templating method using both sustainable precursors and sustainable chemical activators. Tannic acid is a polyphenolic compound derived from biomass, which, together with urea, can serve as a low-cost, environmentally friendly precursor for the preparation of efficient N-doped carbons. The use of various organic and inorganic salts as activating agents afforded carbons with diverse structural and physicochemical characteristics, e.g., their specific surface areas ranged from 1190 m2·g−1 to 3060 m2·g−1. Coupling the salt-templating method and chemical activation with potassium oxalate appeared to be an efficient strategy for the synthesis of a highly porous carbon with a specific surface area of 3060 m2·g−1, a large total pore volume of 3.07 cm3·g−1 and high H2 and CO2 adsorption capacities of 13.2 mmol·g−1 at −196 °C and 4.7 mmol·g−1 at 0 °C, respectively. The most microporous carbon from the series exhibited a CO2 uptake capacity as high as 6.4 mmol·g−1 at 1 bar and 0 °C. Moreover, these samples showed exceptionally high thermal stability. Such activated carbons obtained from readily available sustainable precursors and activators are attractive for several applications in adsorption and catalysis.  相似文献   

10.
Phenolic compounds present in common beans (Phaseolus vulgaris L.) have been reported to possess antimicrobial, anti-inflammatory and ultraviolet radiation (UVR) protective properties. UVR from sunlight, which consists of UV-B and UV-A radiations, induces reactive oxygen species (ROS) and free radical formation, consequently activating proteinases and enzymes such as elastase and tyrosinase, leading to premature skin aging. The objective of this work was to extract, characterize and evaluate the antioxidant and antiaging potential of polyphenols from a black bean endemic variety. The polyphenolic extract was obtained from black beans by supercritical fluid extraction (SFE) using CO2 with a mixture of water–ethanol as a cosolvent and conventional leaching with a mixture of water–ethanol as solvent. The polyphenolic extracts were purified and characterized, and antioxidant potential, tyrosinase and elastase inhibitory potentials were measured. The extract obtained using the SFE method using CO2 and H2O–Ethanol (50:50 v/v) as a cosolvent showed the highest total phenolic compounds yield, with 66.60 ± 7.41 mg GAE/g coat (p > 0.05) and 7.30 ± 0.64 mg C3GE/g coat (p < 0.05) of anthocyanins compared to conventional leaching. Nineteen tentative phenolic compounds were identified in leaching crude extract using ESI-QTOF. Quercetin-3-D-galactoside was identified in crude and purified extracts. The purified SFC extract showed IC50 0.05 ± 0.002 and IC50 0.21 ± 0.008 mg/mL for DPPH and ABTS, respectively. The lowest IC50 value of tyrosinase inhibition was 0.143 ± 0.02 mg/mL and 0.005 ± 0.003 mg/mL of elastase inhibition for leaching purified extract. Phenolic compounds presented theoretical free energy values ranging from −5.3 to −7.8 kcal/mol for tyrosinase and −2.5 to −6.8 kcal/mol for elastase in molecular docking (in silico) studies. The results suggest that the purified extracts obtained by SFE or conventional leaching extraction could act as antioxidant and antiaging ingredients for cosmeceutical applications.  相似文献   

11.
Coinage metal(I)···metal(I) interactions are widely of interest in fields such as supramolecular assembly and unique luminescent properties, etc. Only two types of polynuclear silver(I) pyrazolato complexes have been reported, however, and no detailed spectroscopic characterizations have been reported. An unexpected synthetic method yielded a polynuclear silver(I) complex [Ag(μ-L1Clpz)]n (L1Clpz = 4-chloride-3,5-diisopropyl-1-pyrazolate anion) by the reaction of {[Ag(μ-L1Clpz)]3}2 with (nBu4N)[Ag(CN)2]. The obtained structure was compared with the known hexanuclear silver(I) complex {[Ag(μ-L1Clpz)]3}2. The Ag···Ag distances in [Ag(μ-L1Clpz)]n are slightly shorter than twice Bondi’s van der Waals radius, indicating some Ag···Ag argentophilic interactions. Two Ag–N distances in [Ag(μ-L1Clpz)]n were found: 2.0760(13) and 2.0716(13) Å, and their N–Ag–N bond angles of 180.00(7)° and 179.83(5)° indicate that each silver(I) ion is coordinated by two pyrazolyl nitrogen atoms with an almost linear coordination. Every five pyrazoles point in the same direction to form a 1-D zig-zag structure. Some spectroscopic properties of [Ag(μ-L1Clpz)]n in the solid-state are different from those of {[Ag(μ-L1Clpz)]3}2 (especially in the absorption and emission spectra), presumably attributable to this zig-zag structure having longer but differently arranged intramolecular Ag···Ag interactions of 3.39171(17) Å. This result clearly demonstrates the different physicochemical properties in the solid-state between 1-D coordination polymer and metalacyclic trinuclear (hexanuclear) or tetranuclear silver(I) pyrazolate complexes.  相似文献   

12.
We developed a method for determination of imidacloprid and its metabolites 5-hydroxy imidacloprid, olefin imidacloprid, imidacloprid urea and 6-chloronicotinic acid in Procambarus clarkii (crayfish) tissues using quick, easy, cheap, effective, rugged, and safe (QuEChERS) and high-performance liquid chromatography-triple quadrupole mass spectrometry. Samples (plasma, cephalothorax, hepatopancrea, gill, intestine, and muscle) were extracted with acetonitrile containing 0.1% acetic acid and cleaned up using a neutral alumina column containing a primary secondary amine. The prepared samples were separated using reverse phase chromatography and scanned in the positive and negative ion multiple reaction-monitoring modes. Under the optimum experimental conditions, spiked recoveries for these compounds in P. clarkii samples ranged from 80.6 to 112.7% with relative standard deviations of 4.2 to 12.6%. The limits of detection were 0.02–0.5 μg·L−1, the limits of quantification were 0.05–2.0 μg·L−1 and the method of quantification was 0.05–2.0 μg·kg−1. The method is rapid, simple, sensitive and suitable for rapid determination and analysis of imidacloprid and its metabolites in P. clarkii tissues.  相似文献   

13.
Orange peel by-products generated in the food industry are an important source of value-added compounds that can be potentially reused. In the current research, the effect of oven-drying (50–70 °C) and freeze-drying on the bioactive compounds and antioxidant potential from Navelina, Salustriana, and Sanguina peel waste was investigated using pressurized extraction (ASE). Sixty volatile components were identified by ASE-GC-MS. The levels of terpene derivatives (sesquitenenes, alcohols, aldehydes, hydrocarbons, and esters) remained practically unaffected among fresh and freeze-dried orange peels, whereas drying at 70 °C caused significative decreases in Navelina, Salustriana, and Sanguina peels. Hesperidin and narirutin were the main flavonoids quantified by HPLC-MS. Freeze-dried Sanguina peels showed the highest levels of total-polyphenols (113.3 mg GAE·g−1), total flavonoids (39.0 mg QE·g−1), outstanding values of hesperedin (187.6 µg·g−1), phenol acids (16.54 mg·g−1 DW), and the greatest antioxidant values (DPPH•, FRAP, and ABTS•+ assays) in comparison with oven-dried samples and the other varieties. Nanotechnology approaches allowed the formulation of antioxidant-loaded nanoemulsions, stabilized with lecithin, starting from orange peel extracts. Those provided 70–80% of protection against oxidative UV-radiation, also decreasing the ROS levels into the Caco-2 cells. Overall, pressurized extracts from freeze-drying orange peel can be considered a good source of natural antioxidants that could be exploited in food applications for the development of new products of commercial interest.  相似文献   

14.
Three-dimensional vertically aligned graphene (3DVAG) was prepared by a unidirectional freezing method, and its electrochemical performances were evaluated as electrode materials for zinc−ion hybrid supercapacitors (ZHSCs). The prepared 3DVAG has a vertically ordered channel structure with a diameter of about 20−30 μm and a length stretching about hundreds of microns. Compared with the random structure of reduced graphene oxide (3DrGO), the vertical structure of 3DVAG in a three−electrode system showed higher specific capacitance, faster ion diffusion, and better rate performance. The specific capacitance of 3DVAG reached 66.6 F·g−1 and the rate performance reached 92.2%. The constructed 3DVAG zinc−ion hybrid supercapacitor also showed excellent electrochemical performance. It showed good capacitance retention up to 94.6% after 3000 cycles at the current density of 2 A·g−1.  相似文献   

15.
The bearberry Arctostaphylos uva-ursi (L.) Spreng. has a long history of ethnopharmacological use. This species has been used in folk medicine for centuries as a rich source of raw material abundant in secondary metabolites and is important for medicinal and pharmacological purposes. The plant is a source of herbal material—Uvae ursi folium, which is highly valued and sought by pharmaceutical and cosmetic industries. The studied bearberry leaves can be classified as a suitable herbal material for use in pharmacy; therefore, the investigated populations can be a potentially valuable source of plant material for cultivation and can be used in in vitro cultures and in biotechnological processes. The objective of this study was to characterize the variability of the phytochemical composition and antioxidant activity of water and ethanol bearberry extracts from raw material collected from different natural populations. In each of the twelve A. uva-ursi sites, three leaf samples were collected and analyzed. The water extracts from bearberry leaves were characterized by similar concentration of arbutin (77.64–105.56 mg g−1) and a significantly higher concentration of hydroquinone (6.96–13.08 mg g−1) and corilagin (0.83–2.12 mg g−1) in comparison with the ethanol extracts −77.21–103.38 mg g−1, 10.55–16.72 mg g−1, 0.20–1.54 mg g−1, respectively. The concentration of other metabolites in the water extracts was significantly lower in comparison with the ethanol extracts. In the case of the water extracts, a significant effect of not only total phenolic compounds, but also hydroquinone on the antioxidant parameters, was observed, which indicates the solvent-related activity of these metabolites. Therefore, it is suggested that special attention should be paid to the concentration of not only arbutin, but also hydroquinone in Uvae ursi folium. The latter metabolite serving a very important function as an active bearberry ingredient should be controlled not only in alcoholic extracts but also in water extracts, since bearberry leaves are applied as infusions and decoctions. The results presented in this paper can contribute to appropriate selection of plant material for pharmaceutical, cosmetic, and food industries, with special emphasis on the antioxidant activity of different types of extracts.  相似文献   

16.
This work aimed to prepare a nanoemulsion containing the essential oil of the Protium heptaphyllum resin and evaluate its biocidal activities against the different stages of development of the Aedes aegypti mosquito. Ovicide, pupicide, adulticide and repellency assays were performed. The main constituents were p-cymene (27.70%) and α-pinene (22.31%). The developed nanoemulsion showed kinetic stability and monomodal distribution at a hydrophilic–lipophilic balance of 14 with a droplet size of 115.56 ± 1.68 nn and a zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed insecticidal action with LC50 0.404 µg·mL−1 for the ovicidal effect. In the pupicidal test, at the concentration of 160 µg·mL−1, 100% mortality was reached after 24 h. For adulticidal activity, a diagnostic concentration of 200 µg·mL−1 (120 min) was determined. In the repellency test, a concentration of 200 µg·mL−1 during the 180 min of the test showed a protection index of 77.67%. In conclusion, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin can be considered as a promising colloid that can be used to control infectious disease vectors through a wide range of possible modes of applications, probably as this bioactive delivery system may allow the optimal effect of the P. heptaphyllum terpenes in aqueous media and may also induce satisfactory delivery to air interfaces.  相似文献   

17.
Due to the lack of phytochemical composition data, the major goals of the present study on Amphiroa rigida J.V. Lamouroux were to: (a) investigate and compare volatilome profiles of fresh and air-dried samples obtained by headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) followed by gas chromatography and mass spectrometry (GC/MS) analysis; (b) determine fatty acids profile by gas chromatography with flame ionization detector (GC-FID); (c) obtain the pigment profiles of semipurified extracts by high performance liquid chromatography (HPLC) and (d) evaluate the antioxidant and antimicrobial activities of its less polar fractions. The comparison of headspace of fresh (FrAr) and air-dried (DrAr) samples revealed many similarities regarding the presence and abundance of the major (heptadecane and pentadecane) and minor compounds. The hydrodistillate (HD) of DrAr profile was quite different in comparison to HD-FrAr. The predominant compound in HD-FrAr was (E)-phytol. In HD-DrAr, its percentage was approximately one-half reduced, but the abundance of its degradation product phytone and of unsaturated and oxygenated compounds increased indicating more intense fatty acid decomposition and oxidation during drying. The fatty acid determination revealed that the most dominant was palmitic acid (42.86%) followed by eicosapentaenoic acid (19.14%) and stearic acid (11.65%). Among the pigments, A. rigida contained fucoxanthin (0.63 mg g−1 of dry fraction), lutein (5.83 mg g−1), β-carotene (6.18 mg g−1) and chlorophyll a (13.65 mg g−1). The analyzed less polar fractions of A. rigida exhibited antioxidant scavenging activity with diammonium salt of 2,2′-azino-bis (3-ethylbenzthiazolin-6-yl) sulfonic acid (ABTS) assay up to 3.87 mg g−1 trolox equivalents (TE), and with the oxygen radical absorbance capacity (ORAC) assay up to 825.63 μmol g−1 TE (with carotenoids as the major contributors).  相似文献   

18.
Lithium-rich manganese-based layered cathode materials are considered to be one of the best options for next-generation lithium-ion batteries, owing to their ultra-high specific capacity (>250 mAh·g−1) and platform voltage. However, their poor cycling stability, caused by the release of lattice oxygen as well as the electrode/electrolyte side reactions accompanying complex phase transformation, makes it difficult to use this material in practical applications. In this work, we suggest a molybdenum surface modification strategy to improve the electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2. The Mo-modified Li1.2Mn0.54Ni0.13Co0.13O2 material exhibits an enhanced discharge specific capacity of up to 290.5 mAh·g−1 (20 mA·g−1) and a capacity retention rate of 82% (300 cycles at 200 mA·g−1), compared with 261.2 mAh·g−1 and a 70% retention rate for the material without Mo modification. The significantly enhanced performance of the modified material can be ascribed to the formation of a Mo-compound-involved nanolayer on the surface of the materials, which effectively lessens the electrolyte corrosion of the cathode, as well as the activation of Mo6+ towards Ni2+/Ni4+ redox couples and the pre-activation of a Mo compound. This study offers a facile and effective strategy to address the poor cyclability of lithium-rich manganese-based layered cathode materials.  相似文献   

19.
Essential oils (EOs) have promising antioxidant activities which are gaining interest as natural alternatives to synthetic antioxidants in the food and cosmetic industries. However, quantitative data on chain-breaking activity and on the kinetics of peroxyl radical trapping are missing. Five phenol-rich EOs were analyzed by GC-MS and studied by oxygen-uptake kinetics in inhibited controlled autoxidations of reference substrates (cumene and squalene). Terpene-rich Thymus vulgaris (thymol 4%; carvacrol 33.9%), Origanum vulgare, (thymol 0.4%; carvacrol 66.2%) and Satureja hortensis, (thymol 1.7%; carvacrol 46.6%), had apparent kinh (30 °C, PhCl) of (1.5 ± 0.3) × 104, (1.3 ± 0.1) × 104 and (1.1 ± 0.3) × 104 M−1s−1, respectively, while phenylpropanoid-rich Eugenia caryophyllus (eugenol 80.8%) and Cinnamomum zeylanicum, (eugenol 81.4%) showed apparent kinh (30 °C, PhCl) of (5.0 ± 0.1) × 103 and (4.9 ± 0.3) × 103 M−1s−1, respectively. All EOs already granted good antioxidant protection of cumene at a concentration of 1 ppm (1 mg/L), the duration being proportional to their phenolic content, which dictated their antioxidant behavior. They also afforded excellent protection of squalene after adjusting their concentration (100 mg/L) to account for the much higher oxidizability of this substrate. All investigated EOs had kinh comparable to synthetic butylated hydroxytoluene (BHT) were are eligible to replace it in the protection of food or cosmetic products.  相似文献   

20.
The cyclotriveratrylene-type ligands (±)-tris(iso-nicotinoyl)cyclotriguaiacylene L1 (±)-tris(4-pyridylmethyl)cyclotriguaiacylene L2 and (±)-tris{4-(4-pyridyl)benzyl}cyclotriguaiacylene L3 all feature 4-pyridyl donor groups and all form coordination polymers with CuI and/or CuII cations that show a remarkable range of framework topologies and structures. Complex [CuI 4CuII 1.5(L1)3(CN)6]·CN·n(DMF) 1 features a novel 3,4-connected framework of cyano-linked hexagonal metallo-cages. In complexes [Cu3(L2)4(H2O)3]·6(OTf)·n(DMSO) 2 and [Cu2(L3)2Br2(H2O)(DMSO)]·2Br·n(DMSO) 3 capsule-like metallo-cryptophane motifs are formed which linked through their metal vertices into a hexagonal 2D network of (43.123)(42.122) topology or a coordination chain. Complex [Cu2(L1)2(OTf)2(NMP)2(H2O)2]·2(OTf)·2NMP 4 has an interpenetrating 2D 3,4-connected framework of (4.62.8)(62.8)(4.62.82) topology with tubular channels. Complex [Cu(L1)(NCMe)]·BF4·2(CH3CN)·H2O 5 features a 2D network of 63 topology while the CuII analogue [Cu2(L1)2(NMP)(H2O)]·4BF4·12NMP·1.5H2O 6 has an interpenetrating (10,3)-b type structure and complex [Cu2(L2)2Br3(DMSO)]·Br·n(DMSO) 7 has a 2D network of 4.82 topology. Strategies for formation of coordination polymers with hierarchical spaces emerge in this work and complex 2 is shown to absorb fullerene-C60 through soaking the crystals in a toluene solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号