首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel simple and sensitive, time-based flow injection solid phase extraction system was developed for the automated determination of metals at low concentration. The potential of the proposed scheme, coupled with flame atomic absorption spectrometry (FAAS), was demonstrated for trace lead and chromium(VI) determination in environmental water samples. The method, which was based on a new sorptive extraction system, consisted of a microcolumn packed with glass fiber coated with sol–gel poly (diphenylsiloxane) (sol–gel PDPS), which is presented here for the first time. The analytical procedure involves the on-line chelate complex formation of target species with ammonium pyrrolidine dithiocarbamate (APDC), retention onto the hydrophobic sol–gel sorbent coated surface of glass fibers, and finally elution with methyl isobutyl ketone prior to atomization. All main chemical and hydrodynamic factors, which affect the complex formation, retention, and elution of the metal, were optimized thoroughly. Furthermore, the tolerance to potential interfering ions appearing in environmental samples was also explored. Enhancement factors of 215 and 70, detection limits (3 s) of 1.1 μg·L−1 and 1.2 μg·L−1, and relative standard deviations (RSD) of 3.0% (at 20.0 μg·L−1) and 3.2% (at 20.0 μg·L−1) were obtained for lead and chromium(VI), respec tively, for 120 s preconcentration time. The trueness of the developed method was estimated by analyzing certified reference materials and spiked environmental water samples.  相似文献   

2.
Hybrid materials based on polystyrene (PS) and green metal-organic frameworks (MOFs) were synthesized, characterized, and evaluated as potential sorbents in dispersive micro-solid-phase extraction (µ-dSPE). Among the resulting materials, the hybrid PS/DUT-67(Zr) was selected as the adequate extraction material for the monitoring of six personal care products in micellar cosmetic samples, combining the µ-dSPE method with ultra-high performance liquid chromatography (UHPLC) coupled to ultraviolet/visible detection (UV/Vis). Univariate studies and a factorial design were performed in the optimization of the microextraction procedure. The compromise optimum extraction conditions included 20 mg of PS/DUT-67(Zr) for 10 mL of sample, 2 min of extraction time, and two desorption steps using 100 µL of acetonitrile and 5 min assisted by vortex in each one. The validated μ-dSPE-UHPLC-UV/Vis method presented limits of detection and quantification down to 3.00 and 10.0 μg·L−1, respectively. The inter-day precision values were lower than 23.5 and 21.2% for concentration levels of 75 μg·L−1 and 650 μg·L−1, respectively. The hydrophobicity of the resulting PS/DUT-67(Zr) material was crucial for the improvement of its extraction capacity in comparison with its unitary components, showing the advantages of combining MOFs with other materials, getting new sorbents with interesting properties.  相似文献   

3.
Triflumezopyrim, a novel mesoionic insecticide used to control planthoppers, is a potential substitute for imidacloprid. In this study, triflumezopyrim and imidacloprid residues in rice were determined using a quick, easy, cheap, effective, rugged, and safe procedure combined with ultra-high-performance liquid chromatography–tandem mass spectrometry. The limit of quantification of both triflumezopyrim and imidacloprid was 0.01 mg kg−1, and the average recovery values were 94–104% and 91–106%, with relative standard deviations (RSDs) of 1.1–1.4% and 2.1–3.4% (n = 5), respectively. The consumer protection level was assessed by calculating the theoretical maximum daily intake using the reported maximum residue limits of triflumezopyrim and imidacloprid. The established method was successfully applied to 200 commercial rice samples collected from four provinces in China, and their potential public health risks were assessed using triflumezopyrim and imidacloprid residues. The risk associated with triflumezopyrim and imidacloprid dietary intake was assessed by calculating the national estimated short-term intake and the acute reference dose percentage (%ARfD). The results show that the theoretical maximum daily intake (NEDI) values of triflumezopyrim and imidacloprid in different age and gender groups were 0.219–0.543 and 0.377–0.935 μg kg−1 d−1 bw, and the risk quotient (RQ) values were 0.188–0.467% and 0.365–0.906%, respectively. The acute reference dose (%ARfD) of triflumezopyrim and imidaclopridin ranged from 0.615 to 0.998% and from 0.481 to 0.780%, respectively.  相似文献   

4.
A novel malachite green molecularly imprinted membrane (MG-MIM) with specific selectivity for malachite green (MG) and leucomalachite green (LMG) was prepared using a hydrophobic glass fiber membrane as the polymer substrate, methyl violet as a template analog, 4-vinyl benzoic acid as the functional monomer, and ethyleneglycol dimethacrylate as the crosslinking agent. MG-MIM and non-imprinted membrane (NIM) were structurally characterized using scanning electron microscopy, surface area analyzer, Fourier-transform infrared spectrometer and synchronous thermal analyzer. The results showed that MG-MIM possessed a fluffier surface, porous and looser structure, and had good thermal stability. Adsorption properties of MG-MIM were investigated under optimal conditions, and adsorption equilibrium was reached in 20 min. The saturated adsorption capacities for MG and LMG were 24.25 ng·cm−2 and 13.40 ng·cm−2, and the maximum imprinting factors were 2.41 and 3.20, respectively. Issues such as “template leakage” and “embedding” were resolved. The specific recognition ability for the targets was good and the adsorption capacity was stable even after five cycles. The proposed method was successfully applied for the detection of MG and LMG in real samples, and it showed good linear correlation in the range of 0 to 10.0 μg·L−1 (R2 = 0.9991 and 0.9982), and high detection sensitivity (detection limits of MG and LMG of 0.005 μg/kg and 0.02 μg·kg−1 in shrimp, and 0.005 μg/kg and 0.02 μg/kg in fish sample). The recoveries and relative standard deviations were in the range of 76.31–93.26% and 0.73–3.72%, respectively. The proposed method provides a simple, efficient and promising alternative for monitoring MG and LMG in aquatic products.  相似文献   

5.
Carbamazepine (CBZ) has a narrow therapeutic concentration range, and therapeutic drug monitoring (TDM) is necessary for its safe and effective individualized medication. This study aims to develop a procedure for CBZ detection in serum using coffee-ring effect assisted surface-enhanced Raman spectroscopy (SERS). Silver nanoparticles deposited onto silicon wafers were used as the SERS-active material. Surface treatment optimization of the silicon wafers and the liquid–liquid extraction method were conducted to eliminate the influence of impurities on the silicon wafer surface and the protein matrix. The proposed detection procedure allows for the fast determination of CBZ in artificially spiked serum samples within a concentration range of 2.5–40 μg·mL−1, which matches the range of the drug concentrations in the serum after oral medication. The limit of detection for CBZ was found to be 0.01 μg·mL−1. The developed method allowed CBZ and its metabolites to be ultimately distinguished from real serum samples. The developed method is anticipated to be a potential tool for monitoring other drug concentrations.  相似文献   

6.
This paper evaluates the effect of must hyperoxygenation on final wine. Lower concentrations of caftaric acid (0.29 mg·L−1), coutaric acid (1.37 mg·L−1) and Catechin (0.86 mg·L−1) were observed in hyperoxygenated must in contrast to control must (caftaric acid 32.78 mg·L−1, coutaric acid 5.01 mg·L−1 and Catechin 4.45 mg·L−1). In the final wine, hydroxybenzoic acids were found in higher concentrations in the control variant (gallic acid 2.58 mg·L−1, protocatechuic acid 1.02 mg·L−1, vanillic acid 2.05 mg·L−1, syringic acid 2.10 mg·L−1) than in the hyperoxygenated variant (2.01 mg·L−1, 0.86 mg·L−1, 0.98 mg·L−1 and 1.50 mg·L−1 respectively). Higher concentrations of total flavanols (2 mg·L−1 in hyperoxygenated must and 21 mg·L−1 in control must; 7.5 mg·L−1 in hyperoxygenated wine and 19.8 mg·L−1 in control wine) and polyphenols (97 mg·L−1 in hyperoxygenated must and 249 mg·L−1 in control must; 171 mg·L−1 in hyperoxygenated wine and 240 mg·L−1 in control wine) were found in both the must and the control wine. A total of 24 volatiles were determined using gas chromatography mass spectrometry. Statistical differences were achieved for isobutyl alcohol (26.33 mg·L−1 in control wine and 32.84 mg·L−1 in hyperoxygenated wine), or 1-propanol (7.28 mg·L−1 in control wine and 8.51 mg·L−1 in hyperoxygenated wine), while esters such as isoamyl acetate (1534.41 µg·L−1 in control wine and 698.67 µg·L−1 in hyperoxygenated wine), 1-hexyl acetate (136.32 µg·L−1 in control wine and 71.67 µg·L−1 in hyperoxygenated wine) and isobutyl acetate (73.88 µg·L−1 in control wine and 37.27 µg·L−1 in hyperoxygenated wine) had a statistically lower concentration.  相似文献   

7.
In the present study, the seasonal variability of the in vitro ferric reducing ability of plasma (FRAP), total phenols, and terpene hydrocarbon content in 70% ethanol extracts were evaluated. The samples of crushed (CBs) and non-crushed ripe juniper berries (NCBs) collected at five localities in North-East Slovakia during the years 2012–2014 were compared. The method of preparation of the extract influenced the amount of dry matter (DM) in the extracts. In the CB extracts were statistically higher contents of DM (from 13.91 ± 0.11 g·L−1 to 23.84 ± 0.14 g·L−1) compared to NCB extracts (from 1.39 ± 0.01 g·L−1 to 16.55 ± 0.09 g·L−1). The differences in antioxidant activity between the investigated localities were statistically significant for both types of extract. For example, in 2013 in the locality of Zbojné, the FRAP in NCBs was 76.62 µmol·L−1·g−1 DM and in CBs was 138.27 µmol·L−1·g−1 DM, while in the Miľpoš locality, in NCBs there was 232.66 µmol·L−1·g−1 DM and in CBs there was 1178.98 µmol·L−1·g−1 DM. The differences in the antioxidant activity between the studied years in the case of NCB extracts were not statistically significant. In the case of CB extracts, significant differences between the evaluated years were found. Statistics by ANOVA confirmed that CB extracts prepared from berries in the year 2013 showed significantly higher activity compared to CB extracts from berries from the years 2012 and 2014. Based on the Pearson we found a negative correlation coefficient between the FRAP assay and the content of total polyphenols in NCB extracts (−0.531 in 2012; −0.349 in 2013; and −0.224 in 2014). In contrast, CB extracts showed a positive correlation coefficient (0.843 in 2012; 0.742 in 2013; 0.617 in 2014).  相似文献   

8.
We explored the effects of different light intensities and photoperiods on the growth, nutritional quality and antioxidant properties of two Brassicaceae microgreens (cabbage Brassica oleracea L. and Chinese kale Brassica alboglabra Bailey). There were two experiments: (1) four photosynthetic photon flux densities (PPFD) of 30, 50, 70 or 90 μmoL·m−2·s−1 with red:blue:green = 1:1:1 light-emitting diodes (LEDs); (2) five photoperiods of 12, 14, 16, 18 or 20 h·d−1. With the increase of light intensity, the hypocotyl length of cabbage and Chinese kale microgreens shortened. PPFD of 90 μmol·m−2·s−1 was beneficial to improve the nutritional quality of cabbage microgreens, which had higher contents of chlorophyll, carotenoids, soluble sugar, soluble protein and vitamin C, as well as increased antioxidant capacity. The optimal PPFD for Chinese kale microgreens was 70 μmol·m−2·s−1. Increasing light intensity could increase the antioxidant capacity of cabbage and Chinese kale microgreens, while not significantly affecting glucosinolate (GS) content. The dry and fresh weight of cabbage and Chinese kale microgreens were maximized with a 14-h·d−1 photoperiod. The chlorophyll, carotenoid and soluble protein content in cabbage and Chinese kale microgreens were highest for a 16-h·d−1 photoperiod. The lowest total GS content was found in cabbage microgreens under a 12-h·d−1 photoperiod and in Chinese kale microgreens under 16-h·d−1 photoperiod. In conclusion, the photoperiod of 14~16 h·d−1, and 90 μmol·m−2·s−1 and 70 μmol·m−2·s−1 PPFD for cabbage and Chinese kale microgreens, respectively, were optimal for cultivation.  相似文献   

9.
A quick, sensitive, and reproducible analytical method for the determination of 77 multiclass pesticides and their metabolites in Capsicum and tomato by gas and liquid chromatography tandem mass spectrometry was standardized and validated. The limit of detection of 0.19 to 10.91 and limit of quantification of 0.63 to 36.34 µg·kg−1 for Capsicum and 0.10 to 9.55 µg·kg−1 (LOD) and 0.35 to 33.43 µg·kg−1 (LOQ) for tomato. The method involves extraction of sample with acetonitrile, purification by dispersive solid phase extraction using primary secondary amine and graphitized carbon black. The recoveries of all pesticides were in the range of 75 to 110% with a relative standard deviation of less than 20%. Similarly, the method precision was evaluated interms of repeatability (RSDr) and reproducibility (RSDwR) by spiking of mixed pesticides standards at 100 µg·kg−1 recorded anRSD of less than 20%. The matrix effect was acceptable and no significant variation was observed in both the matrices except for few pesticides. The estimated measurement uncertainty found acceptable for all the pesticides. This method found suitable for analysis of vegetable samples drawn from market and farm gates.  相似文献   

10.
The analytical performance of the clay paste electrode and graphene paste electrode was compared using square wave voltammetry (SWV) and cyclic voltammetry (CV). The comparison was made on the basis of a paracetamol (PA) determination on both working electrodes. The influence of pH and SWV parameters was investigated. The linear concentration ranges were found to be 6.0 × 10−7–3.0 × 10−5 and 2.0 × 10−6–8.0 × 10−5 mol L−1 for clay paste electrode (ClPE) and graphene paste electrode (GrPE), respectively. The detection and quantification limits were calculated as 1.4 × 10−7 and 4.7 ×10−7 mol L−1 for ClPE and 3.7 × 10−7 and 1.2 × 10−6 mol L−1 for GrPE, respectively. Developed methods were successfully applied to pharmaceutical formulations analyses. Scanning electron microscopy and energy-dispersive X-ray spectroscopy were used to characterize ClPE and GrPE surfaces. Clay composition was examined with wavelength dispersive X-ray (WDXRF).  相似文献   

11.
Estrogen contamination is widespread and microbial degradation is a promising removal method; however, unfavorable environments can hinder microbial function. In this study, a natural estrogen 17β-estradiol (E2) was introduced as a degradation target, and a new combination of bacterial carrier was investigated. We found the best combination of polyvinyl alcohol (PVA) and sodium alginate (SA) was 4% total concentration, PVA:SA = 5:5, with nano-Fe3O4 at 2%, and maltose and glycine added to promote degradation, for which the optimal concentrations were 5 g·L−1 and 10 g·L−1, respectively. Based on the above exploration, the bacterial carrier was made, and the degradation efficiency of the immobilized bacteria reached 92.3% in 5 days. The immobilized bacteria were reused for three cycles, and the degradation efficiency of each round could exceed 94%. Immobilization showed advantages at pH 5, pH 11, 10 °C, 40 °C, and 40 g·L−1 NaCl, and the degradation efficiency of the immobilized bacteria was higher than 90%. In the wastewater, the immobilized bacteria could degrade E2 to about 1 mg·L−1 on the 5th day. This study constructed a bacterial immobilization carrier using a new combination, explored the application potential of the carrier, and provided a new choice of bacterial immobilization carrier.  相似文献   

12.
This study was performed to investigate the effects of different supplemental light spectra and doses (duration and illuminance) on the essential oil of basil (Ocimum basilicum L.) cultivated in the net-house in Vietnam during four months. Ten samples of basil aerial parts were hydrodistilled to obtain essential oils which had the average yields from 0.88 to 1.30% (v/w, dry). The oils analyzed using GC-FID and GC-MS showed that the main component was methyl chavicol (87.4–90.6%) with the highest values found in the oils of basil under lighting conditions of 6 h/day and 150–200 µmol·m−2·s−1. Additional lighting conditions caused the significant differences (p < 0.001) in basil biomass and oil production with the highest values found in the oils of basil under two conditions of (1) 71% Red: 20% Blue: 9.0% UVA in at 120 μmol·m−2·s−1 in 6 h/day and (2) 43.5% Red: 43.5% Blue: 8.0% Green: 5.0% Far-Red at 100 μmol·m−2·s−1 in 6 h/day. The oils of basil in some formulas showed weak inhibitory effects on only the Bacillus subtilis strain. Different light spectra affect the biomass and essential oil production of basil, as well as the concentrations of the major components in the oil.  相似文献   

13.
This work aimed to prepare a nanoemulsion containing the essential oil of the Protium heptaphyllum resin and evaluate its biocidal activities against the different stages of development of the Aedes aegypti mosquito. Ovicide, pupicide, adulticide and repellency assays were performed. The main constituents were p-cymene (27.70%) and α-pinene (22.31%). The developed nanoemulsion showed kinetic stability and monomodal distribution at a hydrophilic–lipophilic balance of 14 with a droplet size of 115.56 ± 1.68 nn and a zeta potential of −29.63 ± 3.46 mV. The nanoemulsion showed insecticidal action with LC50 0.404 µg·mL−1 for the ovicidal effect. In the pupicidal test, at the concentration of 160 µg·mL−1, 100% mortality was reached after 24 h. For adulticidal activity, a diagnostic concentration of 200 µg·mL−1 (120 min) was determined. In the repellency test, a concentration of 200 µg·mL−1 during the 180 min of the test showed a protection index of 77.67%. In conclusion, the nanobiotechnological product derived from the essential oil of P. heptaphyllum resin can be considered as a promising colloid that can be used to control infectious disease vectors through a wide range of possible modes of applications, probably as this bioactive delivery system may allow the optimal effect of the P. heptaphyllum terpenes in aqueous media and may also induce satisfactory delivery to air interfaces.  相似文献   

14.
A β-cyclodextrin-decorated magnetic activated carbon adsorbent was prepared and characterized using various analytical techniques (X-ray diffraction (XRD), scanning electron microscopy–electron diffraction spectroscopy (SEM-EDS) and transmission electron microscopy (TEM)), and the adsorbent was used in the development of a magnetic solid-phase microextraction (MSPE) method for the preconcentration of estrone, β-estradiol, hydrocortisone and progesterone in wastewater and river water samples. This method was optimized using the central composite design in order to determine the experimental parameters affecting the extraction procedure. The quantification of hormones was achieved using high-performance liquid chromatography equipped with a photodiode array detector (HPLC-DAD). Under optimum conditions, the linearity ranged from 0.04 to 300 µg L−1 with a correlation of determinations of 0.9969–0.9991. The limits of detection and quantification were between 0.01–0.03 and 0.033–0.1 µg L−1, with intraday and interday precisions at 1.1–3.4 and 3.2–4.2. The equilibrium data were best described by the Langmuir isotherm model, and high adsorption capacities (217–294 mg g−1) were obtained. The developed procedure demonstrated high potential as an effective technique for use in wastewater samples without significant interferences, and the adsorbent could be reused up to eight times.  相似文献   

15.
Coinage metal(I)···metal(I) interactions are widely of interest in fields such as supramolecular assembly and unique luminescent properties, etc. Only two types of polynuclear silver(I) pyrazolato complexes have been reported, however, and no detailed spectroscopic characterizations have been reported. An unexpected synthetic method yielded a polynuclear silver(I) complex [Ag(μ-L1Clpz)]n (L1Clpz = 4-chloride-3,5-diisopropyl-1-pyrazolate anion) by the reaction of {[Ag(μ-L1Clpz)]3}2 with (nBu4N)[Ag(CN)2]. The obtained structure was compared with the known hexanuclear silver(I) complex {[Ag(μ-L1Clpz)]3}2. The Ag···Ag distances in [Ag(μ-L1Clpz)]n are slightly shorter than twice Bondi’s van der Waals radius, indicating some Ag···Ag argentophilic interactions. Two Ag–N distances in [Ag(μ-L1Clpz)]n were found: 2.0760(13) and 2.0716(13) Å, and their N–Ag–N bond angles of 180.00(7)° and 179.83(5)° indicate that each silver(I) ion is coordinated by two pyrazolyl nitrogen atoms with an almost linear coordination. Every five pyrazoles point in the same direction to form a 1-D zig-zag structure. Some spectroscopic properties of [Ag(μ-L1Clpz)]n in the solid-state are different from those of {[Ag(μ-L1Clpz)]3}2 (especially in the absorption and emission spectra), presumably attributable to this zig-zag structure having longer but differently arranged intramolecular Ag···Ag interactions of 3.39171(17) Å. This result clearly demonstrates the different physicochemical properties in the solid-state between 1-D coordination polymer and metalacyclic trinuclear (hexanuclear) or tetranuclear silver(I) pyrazolate complexes.  相似文献   

16.
Sensitive detection and efficient removal of heavy metal ions with high toxicity and mobility are of great importance for environmental monitoring and control. Although several kinds of functional materials have been reported for this purpose, their preparation processes are complicated. Herein, nitrogen self-doped activated porous biochar (NAC) was synthesized in a facile process via an activation–carbonization strategy from cicada shell rich in chitin, and subsequently employed as an effective functional material for the simultaneous determination and removal of Cu2+ from aqueous media. With its unique porous structure and abundant oxygen-containing functional groups, along with the presence of heteroatoms, NAC exhibits high sensitivity for the electrochemical sensing of Cu2+ in concentrations ranging from 0.001 to 1000 μg·L−1, with a low detection limit of 0.3 ng·L−1. Additionally, NAC presents an excellent removal efficiency of over 78%. The maximum adsorption capacity is estimated at 110.4 mg/g. These excellent performances demonstrate that NAC could serve as an efficient platform for the detection and removal of Cu2+ in real environmental areas.  相似文献   

17.
An effective and sensitive method is necessary for the determination of polybrominated diphenyl ethers (PBDEs) pollutants in water. In this study, effervescent-assisted dispersive liquid-liquid microextraction with solidification of the aqueous phase (EA-DLLME-SAP), followed by Gas Chromatography-Tandem Mass Spectrometry (GC-MS-MS) quantitative analysis, was established for the preconcentration and determination of PBDEs in real environmental water samples. 1,1,2,2-Tetrachloroethane was used as the extractant and directly dispersed into the water phase of the aqueous samples with the aid of a large number of carbon dioxide bubbles generated via the acid-base reaction of acetic acid and sodium bicarbonate, which did not require the use of a dispersant during the extraction process. The key factors affecting the extraction recovery were optimized, and an internal standard was used for quantitative analysis, which gave good linearity ranges of 1–100 ng·L−1 (BDEs 28, 47, 99, and 100), 2–200 ng·L−1 (BDEs 153, 154, and 183) and 5–500 ng·L−1 (BDE 209) with limits of quantification in the range of 1.0–5.0 ng·L−1. The accuracy was verified with relative standard deviations < 8.5% observed in tap, lake, river and reservoir water samples with relative recoveries ranging from 67.2 to 102.6%. The presented method contributes to the determination of PBDEs in environmental water samples.  相似文献   

18.
Antioxidant activity associated with green rooibos infusions is attributed to the activity of polyphenols, particularly aspalathin and nothofagin. This study aimed to optimise β-cyclodextrin (β-CD)-assisted extraction of crude green rooibos (CGRE) via total polyphenolic content (TPC) and antioxidant activity assays. Response surface methodology (RSM) permitted optimisation of β-CD concentration (0–15 mM), temperature (40–90 °C) and time (15–60 min). Optimal extraction conditions were: 15 mM β-CD: 40 °C: 60 min with a desirability of 0.985 yielding TPC of 398.25 mg GAE·g−1, metal chelation (MTC) of 93%, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging of 1689.7 µmol TE·g−1, ferric reducing antioxidant power (FRAP) of 2097.53 µmol AAE·g−1 and oxygen radical absorbance capacity (ORAC) of 11,162.82 TE·g−1. Aspalathin, hyperoside and orientin were the major flavonoids, with quercetin, luteolin and chrysoeriol detected in trace quantities. Differences (p < 0.05) between aqueous and β-CD assisted CGRE was only observed for aspalathin reporting the highest content of 172.25 mg·g−1 of dry matter for extracts produced at optimal extraction conditions. Positive, strong correlations between TPC and antioxidant assays were observed and exhibited regression coefficient (R2) between 0.929–0.978 at p < 0.001. These results demonstrated the capacity of β-CD in increasing polyphenol content of green rooibos.  相似文献   

19.
Multiple insecticides’ residues after the mixed application of several neonicotinoids cause combined pollution and bring new challenges to food safety and pest control during agricultural production. In this study, three neonicotinoid insecticides, namely imidacloprid (IMI), acetamiprid (ACE), and thiamethoxam (TMX), were mixed and evenly sprayed on Brassica chinensis L. in the field. Then, the insecticides’ residues were dynamically monitored to determine the differences in their rates of dissipation and final residues after 10 days. The results showed that the dissipation kinetics of neonicotinoids still conformed to the first-order kinetic model for binary or ternary application of neonicotinoid mixtures, with all determination coefficients (R2) being above 0.9 and the dissipation half-life (DT50) being 2.87–6.74 d. For treatment groups with five times the recommended dosages (IMI 300 g·hm2, ACE 900 g·hm2, and TMX 600 g·hm2), mixed insecticides had a slower dissipation rate, and the DT50 values of mixtures were longer than those of single insecticides. Moreover, the final insecticide residues with mixed application were higher than those of single compounds at 10 d after spraying. Thus, mixed applications of neonicotinoids may increase food safety risks as they increase the final insecticide residues in Brassica chinensis L., and care should therefore be taken when considering the combined use of such compounds.  相似文献   

20.
Addition of [UI2(THF)3(μ-OMe)]2·THF (2·THF) to THF solutions containing 6 equiv. of K[C14H10] generates the heteroleptic dimeric complexes [K(18-crown-6)(THF)2]2[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2·4THF (118C6·4THF) and {[K(THF)3][U(η6-C14H10)(η4-C14H10)(μ-OMe)]}2 (1THF) upon crystallization of the products in THF in the presence or absence of 18-crown-6, respectively. Both 118C6·4THF and 1THF are thermally stable in the solid-state at room temperature; however, after crystallization, they become insoluble in THF or DME solutions and instead gradually decompose upon standing. X-ray diffraction analysis reveals 118C6·4THF and 1THF to be structurally similar, possessing uranium centres sandwiched between bent anthracenide ligands of mixed tetrahapto and hexahapto ligation modes. Yet, the two complexes are distinguished by the close contact potassium-arenide ion pairing that is seen in 1THF but absent in 118C6·4THF, which is observed to have a significant effect on the electronic characteristics of the two complexes. Structural analysis, SQUID magnetometry data, XANES spectral characterization, and computational analyses are generally consistent with U(iv) formal assignments for the metal centres in both 118C6·4THF and 1THF, though noticeable differences are detected between the two species. For instance, the effective magnetic moment of 1THF (3.74 μB) is significantly lower than that of 118C6·4THF (4.40 μB) at 300 K. Furthermore, the XANES data shows the U LIII-edge absorption energy for 1THF to be 0.9 eV higher than that of 118C6·4THF, suggestive of more oxidized metal centres in the former. Of note, CASSCF calculations on the model complex {[U(η6-C14H10)(η4-C14H10)(μ-OMe)]2}2− (1*) shows highly polarized uranium–arenide interactions defined by π-type bonds where the metal contributions are primarily comprised by the 6d-orbitals (7.3 ± 0.6%) with minor participation from the 5f-orbitals (1.5 ± 0.5%). These unique complexes provide new insights into actinide–arenide bonding interactions and show the sensitivity of the electronic structures of the uranium atoms to coordination sphere effects.

Use of Chatt metal-arene protocols with uranium leads to the synthesis of the first well-characterized, unsupported actinide–arenide sandwich complexes. The electronic structures of the actinide centres show a key sensitivity to ion pairing effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号