首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sample preparation is the procedure before instrumental analysis and significant to its effectiveness and efficiency. However, this procedure is usually time‐consuming, labor intensive, and prone to error. In the last decade, the development of sample preparation techniques has received increasing attention, especially in complex sample application. To pretreat samples faster and more effectively, advanced materials, instrumentation, and methods have been combined with typical techniques, including extraction, membrane separation, and chemical conversion techniques. Researchers in China focused on the development of simple, efficient sample preparation methods with selective enrichment and rapid separation capabilities for target analysis in complicated sample matrix and contribute almost a half of the publications in this specific field. In this review, a panorama of sample preparation techniques in China has been composed from more than 140 references, and we highlight some promising methods developed during recent years and introduce different separation materials with respect to these methods.  相似文献   

2.
Advances in the area of sample preparation are significant and have been growing significantly in recent years. This initial step of the analysis is essential and must be carried out properly, consisting of a complicated procedure with multiple stages. Consequently, it corresponds to a potential source of errors and will determine, at the end of the process, either a satisfactory result or a fail. One of the advances in this field includes the miniaturization of extraction techniques based on the conventional sample preparation procedures such as liquid‐liquid extraction and solid‐phase extraction. These modern techniques have gained prominence in the face of traditional methods since they minimize the consumption of organic solvents and the sample volume. As another feature, it is possible to reuse the sorbents, and its coupling to chromatographic systems might be automated. The review will emphasize the main techniques based on liquid‐phase microextraction, as well as those based upon the use of sorbents. The first group includes currently popular techniques such as single drop microextraction, hollow fiber liquid‐phase microextraction, and dispersive liquid‐liquid microextraction. In the second group, solid‐phase microextraction techniques such as in‐tube solid‐phase microextraction, stir bar sorptive extraction, dispersive solid‐phase extraction, dispersive micro solid‐phase microextraction, and microextraction by packed sorbent are highlighted. These approaches, in common, aim the determination of analytes at low concentrations in complex matrices. This article describes some characteristics, recent advances, and trends on miniaturized sample preparation techniques, as well as their current applications in food, environmental, and bioanalysis fields.  相似文献   

3.
Electromembrane extraction is a microextraction technique where charged analytes are extracted across a supported liquid membrane and selectively isolated from the sample based on an electrical field. Since the introduction in 2006, there has been continuously increasing interest in electromembrane extraction, and currently close to 50 new articles are published per year. Electromembrane extraction can be performed in different technical configurations, based on standard laboratory glass vials or 96-well plate systems, and applications are typically related to pharmaceutical, environmental, and food and beverages analysis. In addition to this, conceptual research has developed electromembrane extraction into different milli- and microfluidic formats. These are much more early-stage activities, but applications among others related to organ-on-chip systems and smartphone detection indicate unique perspectives. To stimulate more research in this direction, the current article reviews the scientific literature on electromembrane extraction in milli- and microfluidic formats. About 20 original research articles have been published on this subject so far, and these are discussed critically in the following. Based on this and the authors own experiences with the topic, we discuss perspectives, challenges, and future research.  相似文献   

4.
分子印迹样品前处理技术的研究进展   总被引:9,自引:0,他引:9  
样品前处理是分析过程的关键环节,直接影响着分析结果的准确度和精密度.分子印迹聚合物具有特异性识别能力,能从复杂样品中选择性分离富集目标物,在复杂样品前处理领域中有重要的发展潜力和应用前景.本文综述了近年来分子印迹样品前处理技术的研究进展,包括分子印迹固相萃取、分子印迹固相微萃取、分子印迹膜萃取等样品前处理技术.  相似文献   

5.
Plant growth regulators are a class of physiologically active substances that could modify or regulate basic physiological processes in the plant and defense against abiotic and biotic stresses, including natural plant growth regulators and synthetic ones. Different from natural plant growth regulators with low content and high cost of extraction in plants, synthetic ones can be produced in large-scale production and widely used in agriculture for increasing and securing yield and quality of the harvested produce. However, like pesticides, the abuse of plant growth regulators will have negative impacts on human beings. Therefore, it is important to monitor plant growth regulators residues. Due to the low concentration of plant growth regulators and complex matrices of food, it is necessary to isolate and extract plant growth regulators by appropriate adsorbents in sample preparation for obtaining satisfactory results. In the last decade, several advanced materials as adsorbents have shown superiority in sample preparation. This review briefly introduces the recent application and progress of advanced materials as adsorbents in sample preparation for extraction of plant growth regulators from the complex matrix. In the end, the challenge and outlook about the extraction of plant growth regulators of these advanced adsorbents in sample preparation are presented.  相似文献   

6.
杨吉娜  刘丹阳  周婷 《色谱》2020,38(1):74-85
脂质作为细胞膜和亚细胞膜的主要结构成分,在能量来源、细胞信号传导等多种生物学过程中发挥着重要作用。近年来,脂质分析受到越来越多的关注,其中色谱-质谱联用技术在脂质分析中占据主导地位。由于样品基质复杂,样品前处理有富集痕量物质和减少基质干扰的作用,成为脂质分析中的一个关键步骤。该文综述了近年来基于色谱-质谱联用技术的脂质分析中样品前处理技术的研究进展和应用,对各种样品前处理技术进行了阐述和总结。基于液相的萃取方法有液-液萃取和单一有机溶剂萃取。基于固相的萃取方法包括固相萃取和固相微萃取。场辅助萃取方法包括超临界流体萃取、加压流体萃取、微波辅助萃取和超声辅助萃取。此外,还介绍了在线联用样品前处理方法和用于活体分析的样品前处理方法。最后,对基于色谱-质谱联用的脂质分析样品前处理技术存在的问题及发展趋势进行了探讨。样品前处理技术的发展将提高脂质分析的灵敏度、选择性和分析速度。  相似文献   

7.
宋诗瑶  白玉  刘虎威 《色谱》2020,38(1):66-73
脂质不仅是细胞膜的主要组成部分,还参与一些生命活动如能量存储、信号传导等,在生命体中发挥着重要作用。近年来,越来越多的研究表明脂质的变化与一些重大疾病的发生发展密切相关,脂质组学研究对理解疾病的发生机制及过程具有重要意义。在脂质分析过程中,由于样品基质的干扰或被分析物浓度的限制,通常需要对样品进行前处理,以得到最佳的分析性能。该文综述了脂质组学分析中的样品前处理技术,包括脂质的提取方法(如液液萃取、固相萃取等)和针对不同类脂质的化学衍生化技术在各领域,尤其是生命分析和代谢组学中的应用,并对脂质组学分析中的样品前处理技术的发展进行了展望。  相似文献   

8.
样品前处理-色谱分析在线联用技术的研究进展   总被引:8,自引:0,他引:8  
钟启升  胡玉斐  李攻科  胡玉玲 《色谱》2009,27(5):690-699
样品前处理是色谱分析中耗时最多、最容易引起误差的关键环节,因此有关样品前处理技术与色谱分析的在线联用的研究已成为分析化学的前沿课题。本文综述了近年来各种样品前处理技术与色谱分析在线联用的研究进展,包括固相萃取、固相微萃取与液相微萃取、膜辅助萃取、场作用辅助萃取、气相萃取、热解吸以及微芯片分离技术。  相似文献   

9.
冯娟娟  孙明霞  冯洋  辛绪波  丁亚丽  孙敏 《色谱》2022,40(11):953-965
样品前处理技术在样品分析中发挥着越来越重要的作用,而对分析物的富集能力和对样品基体的净化程度主要取决于高效的样品前处理材料,所以发展高性能的样品前处理材料一直是该领域的前沿研究方向。近年来,各类先进材料已经被引入样品前处理领域,发展了多种高性能的萃取材料。由于独特的物理化学性质,石墨烯已在各个研究领域获得广泛关注,在样品前处理领域也发挥着重要作用。基于高的比表面积、大的π电子结构、优异的吸附性能、丰富的官能团和易于化学改性等优点,石墨烯和氧化石墨烯基萃取材料被成功应用于各种样品的前处理,对不同领域中多种类型分析物表现出优异的萃取性能。该论文总结和讨论了近3年来石墨烯材料(石墨烯、氧化石墨烯及其功能化材料)在柱固相萃取、分散固相萃取、磁性固相萃取、搅拌棒萃取、纤维固相微萃取和管内固相微萃取等方面的研究进展。基于多种萃取机理如π-π、静电、疏水、亲水、氢键等相互作用,石墨烯萃取材料能够高效萃取和选择性富集不同类别的目标分析物,如重金属离子、多环芳烃、塑化剂、雌激素、药物分子、农药残留、兽药残留等。基于新型石墨烯萃取材料的各种样品前处理技术与多种检测技术如色谱、质谱、原子吸收光谱等联用,广泛应用于环境监测、食品安全和生化分析等领域。最后,总结了石墨烯在样品前处理领域中存在的问题,并展望了未来的发展趋势。  相似文献   

10.
样品前处理技术在气相色谱分析中的应用进展   总被引:1,自引:0,他引:1  
气相色谱法是当前应用最广泛的分析技术之一。使用气相色谱对复杂基体进行分析时的样品前处理步骤往往繁琐耗时,易引起误差,已成为制约分析效率和准确度提升的关键环节。本文综述了2009-2013年几种主要的样品前处理技术,包括吹扫捕集、固相萃取、固相微萃取、液相微萃取技术以及微波辅助萃取、超声波辅助萃取等场辅助萃取技术在气相色谱分析中的应用研究进展。  相似文献   

11.
The application of graphene‐based sorbents in sample preparation techniques has increased significantly since 2011. These materials have good physicochemical properties to be used as sorbent and have shown excellent results in different sample preparation techniques. Graphene and its precursor graphene oxide have been considered to be good candidates to improve the extraction and concentration of different classes of target compounds (e.g., parabens, polycyclic aromatic hydrocarbon, pyrethroids, triazines, and so on) present in complex matrices. Its applications have been employed during the analysis of different matrices (e.g., environmental, biological and food). In this review, we highlight the most important characteristics of graphene‐based material, their properties, synthesis routes, and the most important applications in both off‐line and on‐line sample preparation techniques. The discussion of the off‐line approaches includes methods derived from conventional solid‐phase extraction focusing on the miniaturized magnetic and dispersive modes. The modes of microextraction techniques called stir bar sorptive extraction, solid phase microextraction, and microextraction by packed sorbent are discussed. The on‐line approaches focus on the use of graphene‐based material mainly in on‐line solid phase extraction, its variation called in‐tube solid‐phase microextraction, and on‐line microdialysis systems.  相似文献   

12.
Sample preparation is a critical step in forensic analytical toxicology. Different extraction techniques are employed with the goals of removing interferences from the biological samples, such as blood, tissues and hair, reducing matrix effects and concentrating the target analytes, among others. With the objective of developing faster and more ecological procedures, microextraction techniques have been expanding their applications in the recent years. This article reviews various microextraction methods, which include solid‐based microextraction, such as solid‐phase microextraction, microextraction by packed sorbent and stir‐bar sorptive extraction, and liquid‐based microextraction, such as single drop/hollow fiber‐based liquid‐phase microextraction and dispersive liquid–liquid microextraction, as well as their applications to forensic toxicology analysis. The development trend in future microextraction sample preparation is discussed.  相似文献   

13.
植物激素样品前处理方法的研究进展   总被引:1,自引:0,他引:1  
吴倩  王璐  吴大朋  段春凤  关亚风 《色谱》2014,32(4):319-329
植物激素是植物中一类含量很低,却对植物生长发育等生命过程起重要调控作用的有机化合物。近年色谱/质谱联用技术不断发展,已成为植物激素分析的常用方法,而样品前处理则是色谱分析过程中的一个关键环节,所以高选择性和高回收率的前处理方法对于植物激素的分析至关重要。根据植物激素的化学性质,本文将其分为酸碱性植物激素、油菜素甾醇、植物多肽3类,并对相应的前处理方法加以综述,特别是近年来发展起来的新方法。内容包括前处理方法的原理、装置、萃取材料以及衍生试剂等,相关内容主要围绕本研究组的痕量植物激素研究工作展开,最后对研究趋势做了简短展望。  相似文献   

14.
A glass liquid–liquid extraction (LLE) microchip with three parallel 3.5 cm long and 100 μm wide interconnecting channels was optimized in terms of more environmentally friendly (greener) solvents and extraction efficiency. In addition, the optimized chip was successfully hyphenated with nano-liquid chromatography with ultraviolet and mass spectrometric detection (nanoLC–UV–MS) for on-line analysis. In this system, sample pretreatment, separation and detection are integrated, which significantly shortens the analysis time, saves labor and drastically reduces solvent consumption. Strychnine was used as model analyte to determine the extraction efficiency of the optimized 3-phase chip. Influence of organic solvent, pH of feed phase, type of alkaloid, and flow rates were investigated. The results demonstrated that the 3-phase chip nanoLC–UV/MS hyphenation combines rapid (∼25 s) and efficient (extraction efficiency >90%) sample prep, with automated alkaloid analyses. The method was applied to real samples including Strychnos nux-vomica seeds, Cephaelis ipecacuanha roots, Atropa belladonna leaves, and Vinca minor leaves.  相似文献   

15.
The article highlights some of the most important developments in membrane-based liquid-phase microextraction techniques and applications. We discuss the evolution of different configurations from the flat type of module through the hollow-fiber module to the latest membrane combination with other sorbents and coating of the hollow fiber. We also discuss the basic principles and important parameters that control the extraction process in two-phase and three-phase systems. Finally, we highlight future trends in module configuration and applications.  相似文献   

16.
姚波  何巧红  杜文斌  石晓彤  方群 《色谱》2009,27(5):662-666
如何实现外部宏观系统与芯片微观系统之间的衔接一直是微流控芯片分析领域中一个重要的研究课题。本文结合作者所在研究组的工作及成果,介绍了当前微流控高通量试样引入技术的研究进展。其中分别介绍了基于固定储液池、流通池和取样探针3种模式的微流控芯片系统试样引入系统,以及基于毛细管的微流控高通量试样引入系统。此外,还对该领域研究发展的前景进行了展望。  相似文献   

17.
张成江  潘加亮  张卓旻  李攻科 《色谱》2014,32(10):1034-1042
微孔有机聚合物(microporous organic polymers,MOPs)是一类由轻元素组成的新型多孔材料,具有骨架密度低、比表面积大、孔尺寸可调控、表面可修饰、化学和物理性质稳定等优点。近年来,MOPs在样品前处理领域展现出巨大的应用潜力。本文综述了MOPs的结构类型及合成方法,以及MOPs在固相萃取、批处理吸附萃取、整体柱和传感膜等样品前处理技术中的应用。  相似文献   

18.
Ultra high performance liquid chromatography and supercritical fluid chromatography techniques are favored because of their high efficiency and fast analysis speed. Although many sample preparation techniques have been coupled with common liquid chromatography online, the online coupling of sample preparation with the two popular chromatography techniques have gained increasing attention owing to the increasing requirements of efficiency and sensitivity. In this review, we have discussed and summarized the recent advances of the online coupling of sample preparation with ultra high performance liquid chromatography and supercritical fluid chromatography techniques. The main sample preparation techniques that have been coupled with ultra high performance liquid chromatography online are solid‐phase extraction and in‐tube solid‐phase microextraction, while solid‐phase extraction and supercritical fluid extraction are the main techniques that have been coupled with supercritical fluid chromatography online. Especially, the strategies for online coupling of sample preparation with chromatography techniques were summarized. Typical applications and growing trends of the online coupling techniques were also discussed in detail. With the increasing demands of improving the efficiency, throughput, and analytical capability toward complex samples of the analysis methods, online coupling of sample preparation with chromatography techniques will acquire further development.  相似文献   

19.
The growing capabilities of FTIR spectrometers and computers have opened the use of new sample preparation techniques in infrared spectroscopy. In addition to the established KBr pellet technique and ATR spectroscopy, diffuse reflectance and photoacoustic spectroscopy are increasing in importance. A systematic experimental comparison of these techniques has been made in order to make proper use of their mutual advantages.  相似文献   

20.
Molecular imprinting technology is a well-established technique for the obtainment of tailor-made polymers, so-called molecularly imprinted polymers, with a predetermined selectivity towards a target analyte or structurally related compounds. Accordingly, molecularly imprinted polymers are considered excellent materials for sample preparation providing unprecedented selectivity to analytical methods. However, the use of molecularly imprinted polymers in sample preparation still presents some shortcomings derived from the synthesis procedure itself limiting its general applicability. In this regard, molecularly imprinted polymers use to display binding sites heterogeneity and slow diffusion mass transfer of analytes to the imprinted sites affecting their overall performance. Besides, the performance of molecularly imprinted polymers in organic solvents is excellent, but their selective binding ability in aqueous media is considerably reduced. Accordingly, the present review pretends to provide an updated overview of the recent advances and trends of molecularly imprinted polymers-based extraction, focusing on those strategies proposed for the improvement of mass transfer and selective recognition in aqueous media. Besides, with the progressive implementation of Green Chemistry principles, the different steps and strategies for the preparation of molecularly imprinted polymers are reviewed from a green perspective.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号