首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
    
We consider an incompressible flow problem in a N-dimensional fractured porous domain (Darcy’s problem). The fracture is represented by a (N−1)-dimensional interface, exchanging fluid with the surrounding media. In this paper we consider the lowest-order (ℝ T0, ℙ0) Raviart-Thomas mixed finite element method for the approximation of the coupled Darcy’s flows in the porous media and within the fracture, with independent meshes for the respective domains. This is achieved thanks to an enrichment with discontinuous basis functions on triangles crossed by the fracture and a weak imposition of interface conditions. First, we study the stability and convergence properties of the resulting numerical scheme in the uncoupled case, when the known solution of the fracture problem provides an immersed boundary condition. We detail the implementation issues and discuss the algebraic properties of the associated linear system. Next, we focus on the coupled problem and propose an iterative porous domain/fracture domain iterative method to solve for fluid flow in both the porous media and the fracture and compare the results with those of a traditional monolithic approach. Numerical results are provided confirming convergence rates and algebraic properties predicted by the theory. In particular, we discuss preconditioning and equilibration techniques to make the condition number of the discrete problem independent of the position of the immersed interface. Finally, two and three dimensional simulations of Darcy’s flow in different configurations (highly and poorly permeable fracture) are analyzed and discussed.https://doi.org/10.1051/m2an/2011148  相似文献   

2.
    
The problem of modeling acoustic waves scattered by an object withNeumann boundary condition is considered. The boundary condition istaken into account by means of the fictitious domain method, yieldinga first order in time mixed variational formulation for theproblem. The resulting system is discretized with two families of mixed finite elements that are compatible withmass lumping. We present numerical results illustrating that the Neumann boundary condition on the object is not always correctly taken into account when the first family of mixed finite elements is used. We, therefore, introduce the second family of mixed finite elements for which atheoretical convergence analysis is presented and error estimates areobtained. A numerical study of the convergence is also considered fora particular object geometry which shows that our theoreticalerror estimates are optimal.https://doi.org/10.1051/m2an:2008047  相似文献   

3.
    
We consider the fictitious domain method with L2‐penalty for the Stokes problem with the Dirichlet boundary condition. First, we investigate the error estimates for the penalty method at the continuous level. We obtain the convergence of order in H1‐norm for the velocity and in L2‐norm for the pressure, where is the penalty parameter. The L2‐norm error estimate for the velocity is upgraded to . Moreover, we derive the a priori estimates depending on for the solution of the penalty problem. Next, we apply the finite element approximation to the penalty problem using the P1/P1 element with stabilization. For the discrete penalty problem, we prove the error estimate in H1‐norm for the velocity and in L2‐norm for the pressure, where h denotes the discretization parameter. For the velocity in L2‐norm, the convergence rate is improved to . The theoretical results are verified by the numerical experiments.  相似文献   

4.
5.
We aim to approximate contrast problems by means of a numerical scheme which does not require that the computational mesh conforms with the discontinuity between coefficients. We focus on the approximation of diffusion-reaction equations in the framework of finite elements. In order to improve the unsatisfactory behavior of Lagrangian elements for this particular problem, we resort to an enriched approximation space, which involves elements cut by the interface. Firstly, we analyze the H1-stability of the finite element space with respect to the position of the interface. This analysis, applied to the conditioning of the discrete system of equations, shows that the scheme may be ill posed for some configurations of the interface. Secondly, we propose a stabilization strategy, based on a scaling technique, which restores the standard properties of a Lagrangian finite element space and results to be very easily implemented. We also address the behavior of the scheme with respect to large contrast problems ending up with a choice of Nitsche?s penalty terms such that the extended finite element scheme with penalty is robust for the worst case among small sub-elements and large contrast problems. The theoretical results are finally illustrated by means of numerical experiments.  相似文献   

6.
    
This article is concerned with the heat conduction problem in composite media. In practical applications, the composite materials often do not contact well and there exist gaps between the contacting materials. This leads to the thermal contact resistance effect which results in a discontinuity of the temperature across the interface. In this article, an unfitted finite element method is proposed to solve the problem. Different from the traditional finite element method, the proposed method uses structured meshes that allow the interface to cut through. To avoid integrating on curved domains and interfaces, the interface is approximated by a broken line/plane corresponding to the triangulation. In addition, a ghost‐penalty is added to recover the condition number of the stiffness matrix to with a hidden constant independent of the mesh‐interface geometry. A rigorous analysis is provided. Finally, numerical tests are presented to verify the theoretical findings. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 354–380, 2017  相似文献   

7.
We present a new finite element method, called ϕ-FEM, to solve numerically elliptic partial differential equations with natural (Neumann or Robin) boundary conditions using simple computational grids, not fitted to the boundary of the physical domain. The boundary data are taken into account using a level-set function, which is a popular tool to deal with complicated or evolving domains. Our approach belongs to the family of fictitious domain methods (or immersed boundary methods) and is close to recent methods of CutFEM/XFEM type. Contrary to the latter, ϕ-FEM does not need any nonstandard numerical integration on cut mesh elements or on the actual boundary, while assuring the optimal convergence orders with finite elements of any degree and providing reasonably well conditioned discrete problems. In the first version of ϕ-FEM, only essential (Dirichlet) boundary conditions was considered. Here, to deal with natural boundary conditions, we introduce the gradient of the primary solution as an auxiliary variable. This is done only on the mesh cells cut by the boundary, so that the size of the numerical system is only slightly increased. We prove theoretically the optimal convergence of our scheme and a bound on the discrete problem conditioning, independent of the mesh cuts. The numerical experiments confirm these results.  相似文献   

8.
讨论了二阶半线性椭圆方程障碍问题的数值求解问题.用单调迭代算法求解障碍问题,并用改进的虚拟区域法求解相关的不规则区域上具有Dirichlet边界条件的椭圆方程.在计算过程中,传统的有限元离散会导致用扩展区域规则网格计算不规则物体边界上积分的困难.为了克服此困难,给出了一种新的基于有限差分的算法,从而使得偏微分快速算法可用.算法结构简单,易于编程实现.对有扩散和增长障碍的logistic人口模型数值模拟说明算法可行且高效.  相似文献   

9.
    
Fictitious domain method shows great advantages when handling problems with complex and constantly varying domains. In this article, we propose an algorithm which extends the fictitious domain method by introducing penalties. Test results with the numerical examples of backward facing step problem and the flow around steady and dynamic cylinder problem show that the algorithm we propose is highly efficient for solving incompressible fluid problems. © 2009 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2010  相似文献   

10.
    
Additive Schwarz preconditioned GMRES is a powerful method for solving large sparse linear systems of equations on parallel computers. The algorithm is often implemented in the Euclidean norm, or the discrete l2 norm, however, the optimal convergence result is available only in the energy norm (or the equivalent Sobolev H1 norm). Very little progress has been made in the theoretical understanding of the l2 behaviour of this very successful algorithm. To add to the difficulty in developing a full l2 theory, in this note, we construct explicit examples and show that the optimal convergence of additive Schwarz preconditioned GMRES in l2 cannot be obtained using the existing GMRES theory. More precisely speaking, we show that the symmetric part of the preconditioned matrix, which plays a role in the Eisenstat–Elman–Schultz theory, has at least one negative eigenvalue, and we show that the condition number of the best possible eigenmatrix that diagonalizes the preconditioned matrix, key to the Saad–Schultz theory, is bounded from both above and below by constants multiplied by h?1/2. Here h is the finite element mesh size. The results presented in this paper are mostly negative, but we believe that the techniques used in our proofs may have wide applications in the further development of the l2 convergence theory and in other areas of domain decomposition methods. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
    
We present and analyze a nonconforming domain decomposition approximation for a hypersingular operator governed by the Helmholtz equation in three dimensions. This operator appears when considering the corresponding Neumann problem in unbounded domains exterior to open surfaces. We consider small wave numbers and low‐order approximations with Nitsche coupling across interfaces. Under appropriate assumptions on mapping properties of the weakly singular and hypersingular operators with Helmholtz kernel, we prove that this method converges almost quasioptimally, that is, with optimal orders reduced by an arbitrarily small positive number. Numerical experiments confirm our error estimate. © 2016 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 33: 125–141, 2017  相似文献   

12.
区域分解界面预条件子构造的一般框架   总被引:1,自引:1,他引:0  
胡齐芽  梁国平 《计算数学》1999,21(1):117-128
1.引言考虑模型问题:其中ΩR2是多边形区域,常数n≥0.将Ω作非重叠区域分解:Ω=假定:(i)当i≠j时,(ii)当Ωi与Ωj相邻时,是Ωi和Ωj的一条公共边记称为界面);(iii)每个闪的尺寸为d,即存在常数co和q,使出包含(包含在)一个直径为C()(Cod)的圆(国内).非重叠区域分解方法的实质是,引进两个变量:内部变量。h和界面变量~.先在几上并行未解子问题,将。。消去(即用~表示),得到~的方程(称为界面方程);再求解界面方程,得到~的值;最后将~回代,得到。人的值(即原问题的解).这类区域分解方法是否比重…  相似文献   

13.
  总被引:2,自引:0,他引:2  
The purpose of this paper is to provide two numerical methods for solving the elastic body-plate problem by nonoverlapping domain decomposition type techniques, based on the discretization method by Wang. The first one is similar to an older method, but here the corresponding Schur complement matrix is preconditioned by a specific preconditioner associated with the plate problem. The second one is a ``displacement-force' type Schwarz alternating method. At each iteration step of the two methods, either a pure body or a pure plate problem needs to be solved. It is shown that both methods have a convergence rate independent of the size of the finite element mesh.

  相似文献   


14.
The purpose of this article is to study a mixed formulation of the elasticity problem in plane polygonal domains and its numerical approximation. In this mixed formulation the strain tensor is introduced as a new unknown and its symmetry is relaxed by a Lagrange multiplier, which is nothing else than the rotation. Because of the corner points, the displacement field is not regular in general in the vicinity of the vertices but belongs to some weighted Sobolev space. Using this information, appropriate refinement rules are imposed on the family of triangulations in order to recapture optimal error estimates. Moreover, uniform error estimates in the Lamé coefficient λ are obtained for λ large. © 2002 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 18: 323–339, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/num.10009  相似文献   

15.
    
In this paper an approach to construct algebraic multilevel preconditioners for serendipity finite element matrices is presented. Two‐level preconditioners constructed in the paper allow to obtain multilevel preconditioners in serendipity case using multilevel preconditioners for linear finite element matrices. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
    
Higher order finite element discretizations, although providing higher accuracy, are considered to be computationally expensive and of limited use for large‐scale problems. In this paper, we have developed an efficient iterative solver for solving large‐scale quadratic finite element problems. The proposed approach shares some common features with geometric multigrid methods but does not need structured grids to create the coarse problem. This leads to a robust method applicable to finite element problems discretized by unstructured meshes such as those from adaptive remeshing strategies. The method is based on specific properties of hierarchical quadratic bases. It can be combined with an algebraic multigrid (AMG) preconditioner or with other algebraic multilevel block factorizations. The algorithm can be accelerated by flexible Krylov subspace methods. We present some numerical results on the convection–diffusion and linear elasticity problems to illustrate the efficiency and the robustness of the presented algorithm. In these experiments, the performance of the proposed method is compared with that of an AMG preconditioner and other iterative solvers. Our approach requires less computing time and less memory storage. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

17.
    
In this article, new unfitted mixed finite elements are presented for elliptic interface problems with jump coefficients. Our model is based on a fictitious domain formulation with distributed Lagrange multiplier. The relevance of our investigations is better seen when applied to the framework of fluid-structure interaction problems. Two finite element schemes with piecewise constant Lagrange multiplier are proposed and their stability is proved theoretically. Numerical results compare the performance of those elements, confirming the theoretical proofs and verifying that the schemes converge with optimal rates.  相似文献   

18.
    
In this paper, we consider the efficient solving of the resulting algebraic system for elliptic optimal control problems with mixed finite element discretization. We propose a block‐diagonal preconditioner for the symmetric and indefinite algebraic system solved with minimum residual method, which is proved to be robust and optimal with respect to both the mesh size and the regularization parameter. The block‐diagonal preconditioner is constructed based on an isomorphism between appropriately chosen solution space and its dual for a general control problem with both state and gradient state observations in the objective functional. Numerical experiments confirm the efficiency of our proposed preconditioner.  相似文献   

19.
    
Based on the auxiliary space method, a preconditioner is studied in this paper for linear systems of equations arising from higher order finite element (FEM) discretizations of linear elasticity equations. The main idea, which is proposed by Xu (Computing 1996; 56 :215–235) for the scalar PDE, is to construct the preconditioner as a combination of a smoother and a coarse level solver, where the systems of equations arising from lower order FEM discretizations are used in the coarse level solver. It is theoretically shown that the condition number of the preconditioned systems is uniformly bounded with respect to both the problem size and moderate Poisson's ratio. When the Poisson's ratio is near the limit of 0.5, we have presented some numerical tests for the case of fourth‐order FEM discretization in a combination with quadratic conforming FEM as a coarse space. The results are almost robust when Poisson's ratio is near the limit of 0.5. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
    
Time harmonic Maxwell equations in lossless media lead to a second order differential equation for the electric field involving a differential operator that is neither elliptic nor definite. A Galerkin method using Nedelec spaces can be employed to get approximate solutions numerically. The problem of preconditioning the indefinite matrix arising from this method is discussed here. Specifically, two overlapping Schwarz methods will be shown to yield uniform preconditioners.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号