首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Inflammasomes are multiprotein complexes formed to regulate the maturation of pro-inflammatory caspases, in response to intracellular or extracellular stimulants. Accumulating studies showed that the inflammasomes are implicated in the pathogenesis of inflammatory bowel disease (IBD), although their activation is not a decisive factor for the development of IBD. Inflammasomes and related cytokines play an important role in the maintenance of gut immune homeostasis, while its overactivation might induce excess immune responses and consequently cause tissue damage in the gut. Emerging studies provide evidence that some genetic abnormalities might induce enhanced NLRP3 inflammasome activation and cause colitis. In these cases, the colonic inflammation can be ameliorated by blocking NLRP3 activation or its downstream cytokine IL-1β. A number of natural products were shown to play a role in preventing colon inflammation in various experimental colitis models. On the other hand, lack of inflammasome function also causes intestinal abnormalities. Thus, an appropriate regulation of inflammasomes might be a promising therapeutic strategy for IBD intervention. This review aims at summarizing the main findings in these studies and provide an outline for further studies that might contribute to our understanding of the role of inflammasomes in the pathogenesis and therapeutic treatment of IBD.  相似文献   

2.
Extracellular ATP exerts important functions as an extracellular signaling molecule via the activation of specific P2 purinergic receptors (P2X and P2Y). We investigated the expression of the different P2 receptors and their possible functional activation in human adipocytes in primary culture. We performed molecular expression analysis of the P2 receptors in human mature adipocytes; examined their functional activation by different nucleotides evaluating [Ca2+]i modifications and IL-6 secretion, and determined the ability of adipocytes to release ATP in the extracellular medium. Human adipocytes express different P2X and P2Y receptors. Extracellular ATP elicited a rise in [Ca2+]i via the activation of P2X and P2Y receptor subtypes. Human adipocytes spontaneously released ATP in the extracellular medium and secreted IL-6 both at rest and after stimulation with ATP. This stimulatory effect of ATP on IL-6 secretion was inhibited by pre-incubation with apyrase, an ATP metabolizing enzyme. These results demonstrate that human adipocytes express different P2X and P2Y receptors that are functionally activated by extracellular nucleotides. Furthermore, human adipocytes spontaneously release ATP, which can act in an autocrine/paracrine fashion on adipocytes, possibly participating in the regulation of inflammatory cytokine release. Thus, P2 purinergic receptors could be a potential therapeutic target to contrast the inflammatory and metabolic complications characterizing obesity.  相似文献   

3.
Inflammasomes are immune cytosolic oligomers involved in the initiation and progression of multiple pathologies and diseases. The tight regulation of these immune sensors is necessary to control an optimal inflammatory response and recover organism homeostasis. Prolonged activation of inflammasomes result in the development of chronic inflammatory diseases, and the use of small drug-like inhibitory molecules are emerging as promising anti-inflammatory therapies. Different aspects have to be taken in consideration when designing inflammasome inhibitors. This review summarizes the different techniques that can be used to study the mechanism of action of potential inflammasome inhibitory molecules.  相似文献   

4.
The review summarizes data evaluating the role of adenosine receptor signaling in murine hematopoietic functions. The studies carried out utilized either non-selective activation of adenosine receptors induced by elevation of extracellular adenosine or by administration of synthetic adenosine analogs having various proportions of selectivity for a particular receptor. Numerous studies have described stimulatory effects of non-selective activation of adenosine receptors, manifested as enhancement of proliferation of cells at various levels of the hematopoietic hierarchy. Subsequent experimental approaches, considering the hematopoiesis-modulating action of adenosine receptor agonists with a high level of selectivity to individual adenosine receptor subtypes, have revealed differential effects of various adenosine analogs. Whereas selective activation of A? receptors has resulted in suppression of proliferation of hematopoietic progenitor and precursor cells, that of A? receptors has led to stimulated cell proliferation in these cell compartments. Thus, A? and A? receptors have been found to play a homeostatic role in suppressed and regenerating hematopoiesis. Selective activation of adenosine A? receptors has been found to act curatively under conditions of drug- and radiation-induced myelosuppression. The findings in these and further research areas will be summarized and mechanisms of hematopoiesis-modulating action of adenosine receptor agonists will be discussed.  相似文献   

5.
采用密度梯度离心法从肝组织中分离、提纯肝星状细胞, 进行常规细胞鉴定后, 通过体外培养诱导肝星状细胞体外活化, 在不同的时间点上进行原位拉曼光谱表征; 通过一次性腹腔注射CCl4诱导鼠急性肝损伤, 取不同的时间点的肝损伤组织做拉曼光谱表征, 并以肝组织的光谱变化来间接反映肝星状细胞的体内活化. 结果表明, 用拉曼光谱能快速、 灵敏地监测肝星状细胞体内和体外活化过程中的分子变化, 可为肝纤维化的早期诊断提供依据.  相似文献   

6.
The importance of modulating the intensity of Wnt signaling has been highlighted in various biological models, but their mechanisms remain unclear. In this study, we found that Ryk—an atypical Wnt receptor with a pseudokinase domain—has a Wnt-modulating effect in bone marrow stromal cells to control hematopoiesis-supporting activities. We first found that Ryk is predominantly expressed in the mesenchymal stromal cells (MSCs) of the bone marrow (BM) compared with hematopoietic cells. Downregulation of Ryk in MSCs decreased their clonogenic activity and ability to support self-renewing expansion of primitive hematopoietic progenitors (HPCs) in response to canonical Wnt ligands. In contrast, under high concentrations of Wnt, Ryk exerted suppressive effects on the transactivation of target genes and HPC-supporting effects in MSCs, thus fine-tuning the signaling intensity of Wnt in BM stromal cells. This ability of Ryk to modulate the HPC-supporting niche activity of MSCs was abrogated by induction of deletion mutants of Ryk lacking the intracellular domain or extracellular domain, indicating that the pseudokinase-containing intracellular domain mediates the Wnt-modulating effects in response to extracellular Wnt ligands. These findings indicate that the ability of the BM microenvironment to respond to extracellular signals and support hematopoiesis may be fine-tuned by Ryk via modulation of Wnt signaling intensity to coordinate hematopoietic activity.Subject terms: Mesenchymal stem cells, Mesenchymal stem cells, Haematopoietic stem cells  相似文献   

7.
8.
9.
Ex vivo expansion of hematopoietic stem cells (HSCs) with most current methods can hardly satisfy clinical application requirement. While in vivo, HSCs efficiently self‐renew in niche where they interact with 3D extracellular matrix and stromal cells. Therefore, co‐cultures of CD34+ cells and mesenchyme stem cells derived from human amniotic membrane (hAMSCs) on the basis of biomimetic macroporous three‐dimensional (3D) poly(ε‐caprolactone) (PCL) scaffolds are developed, where scaffolds and hAMSCs are applied to mimic structural and cellular microenvironment of HSCs. The influence of scaffolds, feeder cells, and contact manners on expansion and stemness maintenance of CD34+ cells is investigated in this protocol. Biomimetic scaffolds‐dependent co‐cultures of CD34+ cells and hAMSCs can effectively promote the expansion of CD34+ cells; meanwhile, indirect contact is superior to direct contact. The combination of biomimetic scaffolds and hAMSCs represents a new strategy for achieving clinical‐scale ex vivo expansion of CD34+ cells.

  相似文献   


10.
11.
Virtually all types of cardiovascular diseases are associated with pathological activation of the innate immune system. The NACHT, leucine-rich repeat (LRR), and pyrin domain (PYD)-containing protein 3 (NLRP3) inflammasome is a protein complex that functions as a platform for rapid induction of the inflammatory response to infection or sterile injury. NLRP3 is an intracellular sensor that is sensitive to danger signals, such as ischemia and extracellular or intracellular alarmins during tissue injury. The NLRP3 inflammasome is regulated by the presence of damage-associated molecular patterns and initiates or amplifies inflammatory response through the production of interleukin-1β (IL-1β) and/or IL-18. NLRP3 activation regulates cell survival through the activity of caspase-1 and gasdermin-D. The development of NLRP3 inflammasome inhibitors has opened the possibility to targeting the deleterious effects of NLRP3. Here, we examine the scientific evidence supporting a role for NLRP3 and the effects of inhibitors in cardiovascular diseases.  相似文献   

12.
The milk fat globule-EGF-factor 8 protein (MFG-E8) has been identified in various tissues, where it has an important role in intercellular interactions, cellular migration, and neovascularization. Previous studies showed that MFG-E8 is expressed in different cell types under normal and pathophysiological conditions, but its expression in hematopoietic stem cells (HSCs) during hematopoiesis has not been reported. In the present study, we investigated MFG-E8 expression in multiple hematopoietic tissues at different stages of mouse embryogenesis. Using immunohistochemistry, we showed that MFG-E8 was specifically expressed in CD34+ HSCs at all hematopoietic sites, including the yolk sac, aorta-gonad-mesonephros region, placenta and fetal liver, during embryogenesis. Fluorescence-activated cell sorting and polymerase chain reaction analyses demonstrated that CD34+ cells, purified from the fetal liver, expressed additional HSC markers, c-Kit and Sca-1, and that these CD34+ cells, but not CD34 cells, highly expressed MFG-E8. We also found that MFG-E8 was not expressed in HSCs in adult mouse bone marrow, and that its expression was confined to F4/80+ macrophages. Together, this study demonstrates, for the first time, that MFG-8 is expressed in fetal HSC populations, and that MFG-E8 may have a role in embryonic hematopoiesis.  相似文献   

13.
Although there are a number of recognized risk factors resulting in cutaneous malignancies, very little is known about the exact mechanism. In keratinocytes different purinergic receptors have been implicated to play essential roles in deciding the fate of the cells through regulating proliferation and differentiation. While P2Y receptors seem to control the former, P2X receptors, among which the P2X(7) receptor is associated with the induction of apoptosis, are likely to be responsible for the latter. Forty mJ/cm(2) UV-B irradiation decreased the number of viable cells as assessed using MTT assay. This irradiation decreased the amount of both P2X(1) and P2Y(2) receptors and essentially destroyed the P2X(7) receptors in surviving cells. Morphology of ATP-induced Ca(2+) transients were altered in irradiated cells compared to control. The amplitude and the rate of rise of the transients were decreased and the return to resting [Ca(2+)](i) prolonged. This observation is consistent with the finding that in control cells mostly ionotropic, while in irradiated cells mostly metabotropic receptors were underlying the response to ATP. These alterations in the expression pattern of purinergic receptors and in the Ca(2+) transients could explain the observed decreased tendency for ATP-induced apoptosis and possibly contribute to the malignant transformation of keratinocytes.  相似文献   

14.
Basal cell carcinomas (BCCs) account for majority of skin malignancies in the United States. The incidence of BCCs is strongly associated with exposure of ultraviolet (UV) radiation. Nucleotide‐binding domain, leucine‐rich‐repeat‐containing family, pyrin domain‐containing 3 (NLRP3) inflammasome plays an important role in innate immune responses. Different stimuli such as toxins, microorganisms and particles released from injured cells activate the NLRP3 inflammasome. Activated NLRP3 results in activation of caspase‐1, which cleaves pro‐IL‐1β to active IL‐1β. In this study, we have shown that NLRP3 is expressed in human basal cell carcinomas. The proximal steps in activation of NLRP3 inflammasome are not well understood. Here, we have attempted to elucidate a critical role for Ca2+ mobilization in activation of the NLRP3 inflammasome by UVB exposure using HaCaT keratinocytes. We have demonstrated that UVB exposure blocks Ca2+ mobilization by downregulating the expression of sarco/endoplasmic reticulum Ca2+‐ATPase (SERCA2), a component of store‐operated Ca2+ entry that leads to activation of the NLRP3 inflammasome.  相似文献   

15.
Inflammasomes are protein complexes which are important in several inflammatory diseases. Inflammasomes form part of the innate immune system that triggers the activation of inflammatory cytokines interleukin (IL)-1β and IL-18. The inflammasome most studied in sterile inflammation and non-communicable disease is the NLRP3 inflammasome. Upon activation by diverse pathogen or disease associated signals, NLRP3 nucleates the oligomerization of an adaptor protein ASC forming a platform (the inflammasome) for the recruitment and activation of the protease caspase-1. Active caspase-1 catalyzes the processing and release of IL-1β and IL-18, and via cleavage of the pore forming protein gasdermin D can drive pyroptotic cell death. This review focuses on the structural basis and mechanism for NLRP3 inflammasome signaling in the context of drug design, providing chemical structures, activities, and clinical potential of direct inflammasome inhibitors. A cryo-EM structure of NLRP3 bound to NEK7 protein provides structural insight and aids in the discovery of novel NLRP3 inhibitors utilizing ligand-based or structure-based approaches.  相似文献   

16.
Prodrugs activated by endogenous stimuli face the problem of tumor heterogeneity. Bioorthogonal prodrug activation that utilizes an exogenous click reaction has the potential to solve this problem, but most of the strategies currently used rely on the presence of endogenous receptors or overexpressed enzymes. We herein integrate the acidic, extracellular microenvironment of a tumor and a click reaction as a general strategy for prodrug activation. This was achieved by using a tumor pH‐responsive polymer containing tetrazine groups, which formed unreactive micelles in the blood but disassembled in response to tumor pH. The vinyl ether group on the macrotheranostic prodrug (CyPVE) is activated by the tetrazine groups, which was confirmed by tumor‐specific fluorescence activation and phototoxicity restoration. Therefore, the bioorthogonal reactions in the context of the ubiquitous acidic tumor microenvironment can provide a general strategy for bioorthogonal prodrug activation.  相似文献   

17.
The purpose of this review is to provide an overview of the effect of (lymph)angiogenic cytokines on hematopoietic cells involved in acute myeloid leukemia (AML). Like angiogenesis, lymphangiogenesis occurs in pathophysiological conditions but not in healthy adults. AML is closely associated with the vasculature system, and the interplay between lymphangiogenic cytokines maintains leukemic blast survival in the bone marrow (BM). Once AML is induced, proangiogenic cytokines function as angiogenic or lymphangiogenic factors and affect hematopoietic cells, including BM-derived immune cells. Simultaneously, the representative cytokines, VEGFs and their receptors are expressed on AML blasts in vascular and osteoblast niches in both the BM and the peripheral circulation. After exposure to (lymph)angiogenic cytokines in leukemogenesis and infiltration, immune cell phenotypes and functions are affected. These dynamic behaviors in the BM reflect the clinical features of AML. In this review, we note the importance of lymphangiogenic factors and their receptors in hematopoietic cells in AML. Understanding the functional characterization of (lymph)angiogenic factors in the BM niche in AML will also be helpful in interrupting the engraftment of leukemic stem cells and for enhancing immune cell function by modulating the tumor microenvironment.  相似文献   

18.
Adenosine triphosphate (ATP) is the key energy intermediate of cellular metabolic processes and a ubiquitous extracellular messenger. As an extracellular messenger, ATP acts at plasma membrane P2 receptors (P2Rs). The levels of extracellular ATP (eATP) are set by both passive and active release mechanisms and degradation processes. Under physiological conditions, eATP concentration is in the low nanomolar range but can rise to tens or even hundreds of micromoles/L at inflammatory sites. A dysregulated eATP homeostasis is a pathogenic factor in several chronic inflammatory diseases, including type 2 diabetes mellitus (T2DM). T2DM is characterized by peripheral insulin resistance and impairment of insulin production from pancreatic β-cells in a landscape of systemic inflammation. Although various hypoglycemic drugs are currently available, an effective treatment for T2DM and its complications is not available. However, counteracting systemic inflammation is anticipated to be beneficial. The postulated eATP increase in T2DM is understood to be a driver of inflammation via P2X7 receptor (P2X7R) activation and the release of inflammatory cytokines. Furthermore, P2X7R stimulation is thought to trigger apoptosis of pancreatic β-cells, thus further aggravating hyperglycemia. Targeting eATP and the P2X7R might be an appealing novel approach to T2DM therapy.  相似文献   

19.
The NLRC4 inflammasome, a member of the nucleotide-binding and oligomerization domain-like receptor (NLR) family, amplifies inflammation by facilitating the processing of caspase-1, interleukin (IL)–1β, and IL-18. We explored whether NLRC4 knockdown alleviated inflammatory injury following intracerebral hemorrhage (ICH). Furthermore, we investigated whether NLRC4 inflammasome activation can be adjusted by the regulator of G protein signaling 2/leucine-rich repeat kinase-2 pathway. Fifty microliters of arterial blood was drawn and injected into the basal ganglion to simulate the ICH model. NLRC4 small interfering RNAs (siRNAs) were utilized to knockdown NLRC4. An LRRK2 inhibitor (GNE7915) was injected into the abdominal cavity. Short hairpin (sh) RNA lentiviruses and lentiviruses containing RGS2 were designed and applied to knockdown and promote RGS2 expression. Neurological functions, brain edema, Western blot, enzyme-linked immunosorbent, hematoxylin and eosin staining, Nissl staining, immunoprecipitation, immunofluorescence assay and Evans blue dye extravasation and autofluorescence assay were evaluated. It was shown that the NLRC4 inflammasome was activated following ICH injury. NLRC4 knockdown extenuated neuronal death, damage to the blood-brain barrier, brain edema and neurological deficiency 3 days after ICH. NLRC4 knockdown reduced myeloperoxidase (MPO) cells as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6, IL-1β and IL-18 following ICH. GNE7915 reduced pNLRC4 and NLRC4 inflammasome activation. RGS2 suppressed the interaction of LRRK2 and NLRC4 and NLRC4 inflammasome activation by regulating pLRRK2. Our study demonstrated that the NLRC4 inflammasome may aggravate the inflammatory injury induced by ICH and that RGS2/LRRK2 may relieve inflammatory injury by restraining NLRC4 inflammasome activation.Subject terms: Molecular neuroscience, Acute inflammation  相似文献   

20.
Microstructural morphology of the extracellular matrix guides the organization of cells in 3D. However, current biomaterials-based matrices cannot provide distinct spatial cues through their microstructural morphology due to design constraints. To address this, colloidal gels are developed as 3D matrices with distinct microstructure by aggregating ionic polyurethane colloids via electrostatic screening. Due to the defined orientation of interconnected particles, positively charged colloids form extended strands resulting in a dense microstructure whereas negatively charged colloids form compact aggregates with localized large voids. Chondrogenesis of human mesenchymal stem cells (MSCs) and endothelial morphogenesis of human endothelial cells (ECs) are examined in these colloidal gels. MSCs show enhanced chondrogenic response in dense colloidal gel due to their spatial organization achieved by balancing the cell–cell and cell–matrix interactions compared to porous gels where cells are mainly clustered. ECs tend to form relatively elongated cellular networks in dense colloidal gel compared to porous gels. Additionally, the role of matrix stiffness and viscoelasticity in the morphogenesis of MSCs and ECs are analyzed with respect to microstructural morphology. Overall, these results demonstrate that colloidal gels can provide spatial cues through their microstructural morphology and in correlation with matrix mechanics for cell morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号