首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

In this research, electrospun polycaprolactam nanofibers were collected on a fine stainless steel mesh sheet without a binder, and a layer of conductive polyaniline was chemically deposited on the nanofibers. The polyaniline immobilized on the polycaprolactam nanofibers provided high electrical conductivity, acceptable mechanical stability, and a large surface area. This assembly was then used as a working electrode in electrochemically controlled solid-phase microextraction (EC-SPME), a fast and environmentally friendly method. The polymer layers were characterized by SEM and FTIR techniques. Significant factors affecting the EC-SPME efficiency were investigated, including the desorption conditions, the sorbent used, the pH of the sample solution, the extraction voltage, the extraction time, and the ionic strength. Under the optimum conditions, the limits of detection and quantification for the target analytes were 0.9–1.8 μg L−1 and 3.0–6.1 μg L−1, respectively. The linear dynamic range was 5–2000 μg L−1, with R2 > 0.993. The method was coupled with HPLC analysis and applied to the determination of angiotensin ΙΙ receptor antagonists (ARA-ΙΙs) in human plasma, and relative recoveries of 91.1–104.3% with RSDs of ≤8.3% were obtained.

  相似文献   

2.
Polyaniline nanofiber films were fabricated on the surface of stainless steel wire via a controllable and simple electrophoretic deposition route from a nonaqueous colloidal suspension consisting of polyaniline nanofibers. The prepared coating material was then characterized by field emission scanning electron microscopy equipped with energy dispersive spectroscopy and elemental mapping analysis. The fabricated polyaniline film-coated stainless steel wire was then utilized as an effective and novel sorbent phase for solid-phase microextraction of tamoxifen for subsequent gas chromatography/flame ionization detection of this anticancer drug. Parameters consisting of the temperature, extraction time, salt concentration, agitation speed, pH, temperature and time of desorption were studied and optimized using a one-at-a-time strategy. Under the optimum conditions, detection limit (S/N = 3), the limit of quantification (10/3 limit of detection), linear dynamic range, repeatability and reproducibility values of 0.51 μg L−1, 1.7 μg L−1, 2–1,130 μg L−1, 5.7% and 8.6% were attained, respectively. The prepared fiber can preserve 90% of its efficacy after 20 consecutive cycles, demonstrating the suitable thermal stability and cyclability of the proposed solid-phase microextraction coating material for the determination of tamoxifen by gas chromatography/flame ionization detection. The route was effectively utilized to determine tamoxifen in urine samples, with relative recoveries ranging from 89 to 106%.  相似文献   

3.

Methods were determined for lead and tin determinations in river, marine and lake sediments by slurry sampling and graphite furnace atomic absorption spectrometry. The optimizations were carried out using River Sediment BCR 320 and Marine Sediment PACS-2 for Pb and Sn, respectively. For Pb determination, the parameters studied included inorganic acid mixture, stabilizing agent, sample mass and sonication time. The influence of diluents and the extraction to the liquid phase for two different matrices was evaluated for Sn. The Pb content in the slurry liquid phase was ca. 56%, and ranged from 75% to 100% for Sn. Representative masses of 34 and 45 mg, and effective masses of 12 and 48 μg for Pb and Sn, respectively, were obtained under optimized conditions. Detection and quantification limits of 0.2 and 0.7 μg g−1 for Pb, and 1.5–2.6 and 4.5–7.6 μg g−1 for Sn were obtained.

  相似文献   

4.
In clinical analysis creatinine is a routine biomarker for the assessment of renal and muscular dysfunctions. Although several techniques have been proposed for a fast and accurate quantification of creatinine in human serum or urine, most of them require expensive or complex apparatus, advanced sample preparation or skilled operators. To circumvent these issues, we propose two home-made platforms based on a CD Spectroscope (CDS) and Computer Screen Photo-assisted Technique (CSPT) for the rapid assessment of creatinine level in human urine. Both systems display a linear range (r2 = 0.9967 and 0.9972, respectively) from 160 μmol L−1 to 1.6 mmol L−1 for standard creatinine solutions (n = 15) with respective detection limits of 89 μmol L−1 and 111 μmol L−1. Good repeatability was observed for intra-day (1.7–2.9%) and inter-day (3.6–6.5%) measurements evaluated on three consecutive days. The performance of CDS and CSPT was also validated in real human urine samples (n = 26) using capillary electrophoresis data as reference. Corresponding Partial Least-Squares (PLS) regression models provided for mean relative errors below 10% in creatinine quantification.  相似文献   

5.
《Microchemical Journal》2011,97(2):337-343
An analytical protocol combining a headspace technique with gas chromatography and detection by photoionization detector and flame ionization detector (HS-GC-PID-FID) was developed. This procedure was used to measure volatile organic compounds (VOCs) in environmental aqueous matrices and was applied in determination of VOCs on the coast of Fortaleza, Brazil. At optimum operating conditions, analytical figures of merit such as linearity (R ranged from 0.9983 to 0.9993), repeatability (5.62 to 9.63% and 0.02 to 0.19% for the quantitative and qualitative analyses, respectively), detection limits (0.22 to 7.48 μg L1) and sensibility were estimated. This protocol favors a fast sampling/sample preparation (in situ), minimizes the use of laboratory material, eliminates the matrix effect from environmental samples, and can be applied to river, estuarine and oceanic waters. The advantage of detectors in series is that a low sensitivity in detection in one is compensated by the other. Toluene was the most abundant VOC in the studied area, with an average concentration of 1.63 μg L1. It was followed by o-xylene (1.15 μg L1), trichloroethene (1.08 μg L1), benzene (0.86 μg L1), ethylbenzene (0.74 μg L1), carbon tetrachloride (0.55 μg L1), m/p-xylene (0.48 μg L1) and tetrachloroethene (0.46 μg L1), compounds which are very commonly detected in urban runoff from most cities. The results of the VOC distribution showed that port activity was not the main source of VOCs along the Fortaleza Coast, but that the contribution from urban runoff seemed more significant.  相似文献   

6.
A novel method for rapid HPLC-ICP-MS analysis of oxaliplatin in human urine was developed implementing a stationary HPLC phase with a particle size of 1.8 μm. The method allowed a cycle time of <1 min at a HPLC flow rate of 0.9 mL min−1. Procedural limits of detection of 0.05 μg L−1 oxaliplatin (150 fg on column) were obtained. Analysis of oxaliplatin in patient urine showed that accurate quantification of the intact drug demanded for storage at −80 °C and rapid measurement after thawing.  相似文献   

7.
A novel poly(p-xylenolsulfonephthalein) modified glassy carbon electrode was prepared for the simultaneous determination of ascorbic acid (AA), epinephrine (EP) and uric acid (UA). Cyclic voltammetric, chronoamperometric, and differential pulse voltammetric methods were used to investigate the modified electrode for the electrocatalytic oxidation of EP, AA, and UA in aqueous solutions. The separation of the oxidation peak potentials for AA–EP and EP–UA was about 200 and 130 mV, respectively. The calibration curves obtained for AA, EP, and UA were in the ranges of 10–1343, 2–390, and 0.1–560 μmol L−1, respectively. The detection limits (S/N = 3) were 4, 0.1, and 0.08 μmol L−1 for AA, EP and UA, respectively. The diffusion coefficient and the catalytic rate constant for the oxidation of EP at the modified electrode were calculated as 1.40(±0.10) × 10−4 cm2 s−1 and 1.06 × 103 mol−1 L s−1, respectively. The present method was applied to the determination of EP in pharmaceutical and urine samples, AA in commercially available vitamin C tablet, and EP plus UA in urine samples.  相似文献   

8.
A novel graphene/dodecanol floating solidification microextraction followed by HPLC with diode‐array detection has been developed to extract trace levels of four cinnamic acid derivatives in traditional Chinese medicines. Several parameters affecting the performance were investigated and optimized. Also, possible microextraction mechanism was analyzed and discussed. Under the optimum conditions (amount of graphene in dodecanol: 0.25 mg/mL; volume of extraction phase: 70 μL; pH of sample phase: 3; extraction time: 30 min; stirring rate: 1000 rpm; salt amount: 26.5% NaCl; volume of sample phase: 10 mL, and without dispersant addition), the enrichment factors of four cinnamic acid derivatives ranged from 26 to 112, the linear ranges were 1.0 × 10−2–10.0 μg/mL for caffeic acid, 1.3 × 10−3–1.9 μg/mL for p‐hydroxycinnamic acid, 2.8 × 10−3–4.1 μg/mL for ferulic acid, and 2.7 × 10−3–4.1 μg/mL for cinnamic acid, with r 2 ≥ 0.9993. The detection limits were found to be in the range of 0.1–1.0 ng/mL, and satisfactory recoveries (92.5–111.2%) and precisions (RSDs 1.1–9.5%) were also achieved. The results showed that the approach is simple, effective and sensitive for the preconcentration and determination of trace levels of cinnamic acid derivatives in Chinese medicines. The proposed method was compared with conventional dodecanol floating solidification microextraction and other extraction methods.  相似文献   

9.
This study examines the application of solid-phase microextraction coupled with high performance liquid chromatography combined with post-column photochemically induced fluorimetry derivatization and fluorescence detection (SPME-HPLC-PIF-FD) for the determination of four phenylurea herbicides (monolinuron, diuron, linuron and neburon) and propanil in groundwater. Direct immersion (DI) SPME was applied using a 60 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB) fiber for the extraction of the pesticides from groundwater samples. An AQUASIL C18 column (150 mm × 4.6 mm i.d., 5 μm) was used for separation and determination in HPLC. The method was evaluated with respect to the limits of detection (LODs) and the limits of quantification (LOQs) according to IUPAC. The limits of detection varied between 0.019 μg L−1 and 0.034 μg L−1. Limits of quantification ranged between 0.051 μg L−1 and 0.088 μg L−1. These values meet the recommended limits for individual pesticides in groundwater (0.1 μg L−1) established by the EU. Recoveries ranged between 86% and 105% and relative standard deviation values between 2% and 8%.  相似文献   

10.
A novel approach is presented to determine mercury in urine samples, employing vortex-assisted ionic liquid dispersive liquid–liquid microextraction and microvolume back-extraction to prepare samples, and screen-printed electrodes modified with gold nanoparticles for voltammetric analysis. Mercury was extracted directly from non-digested urine samples in a water-immiscible ionic liquid, being back-extracted into an acidic aqueous solution. Subsequently, it was determined using gold nanoparticle-modified screen-printed electrodes. Under optimized microextraction conditions, standard addition calibration was applied to urine samples containing 5, 10 and 15 μg L−1 of mercury. Standard addition calibration curves using standards between 0 and 20 μg L−1 gave a high level of linearity with correlation coefficients ranging from 0.990 to 0.999 (N = 5). The limit of detection was empirical and statistically evaluated, obtaining values that ranged from 0.5 to 1.5 μg L−1, and from 1.1 to 1.3 μg L−1, respectively, which are significantly lower than the threshold level established by the World Health Organization for normal mercury content in urine (i.e., 10–20 μg L−1). A certified reference material (REC-8848/Level II) was analyzed to assess method accuracy finding 87% and 3 μg L−1 as the recovery (trueness) and standard deviation values, respectively. Finally, the method was used to analyze spiked urine samples, obtaining good agreement between spiked and found concentrations (recovery ranged from 97 to 100%).  相似文献   

11.
A highly sensitive method was developed for the analysis of short‐chain perfluorinated alkyl acids (PFAAs) in serum samples using solid‐phase extraction (SPE) coupled with ion chromatography–electrospray ionization–mass spectrometry. The synthesized amino‐functionalized graphene oxide nanocomposites were used as an SPE sorbent for the enrichment of trace analytes and purification of samples. They exhibited high selectivity to polar compounds. The suppressor was employed to remove counterions and reduce background signals of mobile phase. These two crucial steps could effectively eliminate matrix effects and enhance analytical sensitivity. The lowest limits of quantification were 2.0 μg L−1 for perfluorobutanoic acid and perfluorovaleric acid, 1.0 μg L−1 for perfluorocaproic acid and 0.50 μg L−1 for perfluorobutane sulfonic acid, respectively. The procedure was successfully applied for determination of trace PFAAs in 25 serum samples. Mean recoveries ranged from 86.3 to 101.4% with relative standard deviations of 1.6–6.8%. The method allowed an excellent separation and quantification of short‐chain PFAAs that were difficult to analyze by conventional chromatography.  相似文献   

12.
A new multiresidue method has been developed and validated for the simultaneous extraction of more than two hundred pesticides, including non-polar and polar pesticides (carbamates, organochlorine, organophosphorous, pyrethroids, herbicides and insecticides) in urine at trace levels by gas and ultra high pressure liquid chromatography coupled to ion trap and triple quadrupole mass spectrometry, respectively (GC-IT-MS/MS, UHPLC-QqQ-MS/MS). Non-polar and polar pesticides were simultaneously extracted from urine samples by a simple and fast solid phase extraction (SPE) procedure using C18 cartridges as sorbent, and dichloromethane as elution solvent. Recovery was in the range of 60-120%. Precision values expressed as relative standard deviation (RSD) were lower than 25%. Identification and confirmation of the compounds were performed by the use of retention time windows, comparison of spectra (GC-amenable compounds) or the estimation of the ion ratio (LC-amenable compounds). For GC-amenable pesticides, limits of detection (LODs) ranged from 0.001 to 0.436 μg L−1 and limits of quantification (LOQs) from 0.003 to 1.452 μg L−1. For LC-amenable pesticides, LODs ranged from 0.003 to 1.048 μg L−1 and LOQs ranged from 0.011 to 3.494 μg L−1. Finally, the optimized method was applied to the analysis of fourteen real samples of infants from agricultural population. Some pesticides such as methoxyfenozide, tebufenozide, piperonyl butoxide and propoxur were found at concentrations ranged from 1.61 to 24.4 μg L−1, whereas methiocarb sulfoxide was detected at trace levels in two samples.  相似文献   

13.
A flow injection hydride generation system with a metal furnace atomizer (Inconel 600® alloy) was employed for Bi and Se determination. The presented methods have linear ranges up to 200 and 500 μg L− 1 for Bi and Se, respectively, with good linearities (r2 = 0.9997 and 0.9974, respectively). The limits of quantification obtained according to IUPAC recommendations were 2.3 μg L− 1 for Bi and 6 μg L− 1 for Se, and the relative standard deviations (N = 6) based on Bi and Se analytical responses from real samples were 2.7% and 10%, respectively. Accuracy evaluations were based on certified materials such as SRM 361, SRM 363, and SRM 364 (steel alloys) for Bi, Mess-3 (marine sediment), SRM 397 (human hair), and Bio-Rad2 — 69042 (urine) for Se. Good agreements between the results were obtained at the 95% confidence level, according to the t-test.  相似文献   

14.
A method was developed for the determination of all rare earth elements (REEs) at sub ng g−1 levels in human hair (GBW 09101, SRM, Republic of China) and wheat flour (GBW 08503, SRM, Republic of China) by Inductively coupled plasma mass spectrometry (ICP-MS). The values obtained by dry ashing and microwave oven digestion procedures were compared with those obtained by traditional open vessel acid digestion method. The validity of the analytical procedure was examined by analyzing spiked samples and two vegetables (GBW 07603 and GBW 07605, SRMs, Republic of China). The results are satisfactory. The detection limits for 14 REEs ranged from 0.0039 to 0.0003 ng cm−3 in solution and the quantification limits ranged from 0.16 to 0.01 ng g−1 in solid sample. The precision for most REEs were less than 10% RSD.  相似文献   

15.
This paper proposes an alternative analytical method using electrothermal atomic absorption spectrometry to determine Mo and V in multiphase gasoline emulsions. Samples were prepared by mixing gasoline with a nitric acid solution (0.1% v/v) and two cationic surfactants. The mixture was sonicated, resulting in an emulsive system. Calibration was done by using the aforementioned solutions with added analyte. The detection limits (3σ) of Mo and V were 0.9 μg l 1 and 4.7 μg l 1, respectively. The accuracy and precision of the proposed method were evaluated by the analysis of samples spiked with metallo-organic standard and the relative standard deviation obtained ranged from 1.2% to 4.4% in samples spiked with 2 μg l 1 of each metal. The recovery rates varied from 91.2% to 101.6%. The proposed method was applied to determine Mo and V in samples of gasoline from different gas stations.  相似文献   

16.
《Analytical letters》2012,45(15):2508-2521
Porous polyaniline coatings doped with different counter ions were electrodeposited on the surface of stainless steel wires using controlled potentiostatic coulometry. Prior to electropolymerization, the stainless steel wires were chemically etched to improve subsequent immobilization of the polyaniline coatings on the substrate and to increase the effective surface area. Porous polyaniline coatings doped with sulfate, nitrate, and perchlorate counter ions were employed for solid-phase microextraction (SPME) of 2-chlorophenol, 2,4-dichlorophenol, triclosan, and 2,4-dichlorophenoxyacetic acid coupled to high-performance liquid chromatography. The results demonstrated that the perchlorate doped polyaniline coating exhibited the highest extraction efficiency for 2-chlorophenol, 2,4-dichlorophenol, and triclosan at pH 5.0, indicating that the extraction capability was modified by introducing different counter ions into the coatings. As a result, the perchlorate doped polyaniline coated fiber was further used for the optimization of extraction condition s . The method provided linear dynamic ranges over 2 to 4 orders of magnitude. The limits of detection were 0.006 µg · L?1, 0.005 µg · L?1, and 0.040 µg · L?1 for 2-chlorophenol, 2,4-dichlorophenol, and triclosan, respectively. The precision expressed as the relative standard deviation ranged from 2.20% to 5.04% for spiked water at 10 µg · L ?1 (n = 5) and the fiber to fiber reproducibility was between 3.27% and 5.91% (n = 5). The method was successfully applied to the determination of chlorophenolics in real water samples. The recoveries of chlorophenolics in spiked water at 5.0 µg · L?1 were between 99.60% and 108.7% with relative standard deviations between 3.24% and 5.47%.  相似文献   

17.
A magnetic nanocomposite consisting of nanoparticles–polybutylene terephthalate (MNPs–PBT) was electrospun and used as an extracting medium for an on-line μ-solid phase extraction (μ–SPE)–high performance liquid chromatography (HPLC) set–up with an ultraviolet (UV) detection system. Due to the magnetic property of the prepared nanofibers, the whole extraction procedure was implemented under an external magnetic field to enhance the extraction efficiencies. The developed method along with the synthesized nanocomposite were found to be appropriate for the determination of trace levels of selected drugs including furosemide, naproxen, diclofenac and clobetasol propionate in the urine sample. The prepared MNPs-PBT electrospun nanocomposite was characterized using the scanning electron microscopy (SEM), energy dispersive spectroscopy (EDX) and Fourier transform infrared (FT–IR) spectroscopy. The prepared magnetic fibers showed high porosity, which was another driving force for the extraction efficiency enhancement. Major parameters affecting the extraction efficiency of the selected drugs were optimized. The limits of detections (LOD) of the studied drugs were in the range of 0.4–1.6 μg L−1 and the limits of quantification (LOQ) were 1–4 μg L−1 under the optimized conditions. Relative standard deviation (RSD%) for three replicates at three concentration levels of 6, 100 and 400 μg L−1 were 5.9–8.0% while acceptable linear range with two orders of magnitude was obtained (R2 = 0.99). The method was validated by the determination of the selected drugs in urine samples and the results indicated that this method has sufficient potential for enrichment and determination of the desired drugs in the urine sample. The relative recovery values were found to be in the range of 78–91%. Implementing the developed on–line μ–SPE method under the external magnetic field induction, led to higher extraction efficiencies for the selected drugs with various diamagnetic properties.  相似文献   

18.
In this work, the application of a new pulsed amperometric detection (PAD) waveform at a glassy carbon electrode, operating in typical chromatographic mobile phases, is proposed for the sensitive and reproducible determination of arylethanolaminic and phenolic moiety based compounds (e.g. beta-agonists and polyphenols). Preliminary experiments by cyclic voltammetry were carried out to investigate the electrochemical behaviour and to select the detection and cleaning electrode potentials. The proposed potential-time profile was designed to prevent the carbon electrode fouling under repeated analyses, thus ensuring a reproducible and sensitive quantitative determination, without the need of any mechanical or chemical electrode cleaning procedure. The waveform electrochemical parameters, including detection and delay times, were optimized in terms of sensitivity, limit of detection and response stability. The optimized waveform allowed the sensitive and stable detection of model compounds, such as clenbuterol and caffeic acid, that showed detection limits of 0.1 μg L−1 and 14 μg L−1, quantification limits of 0.4 μg L−1 and 46 μg L−1, and linearity up to 100 μg L−1 (r = 0.9993) and 10 mg L−1 (r = 0.9998), respectively. Similar results were obtained for other compounds of the same classes, with precision values under repeatability conditions ranging from 3.0 to 5.9%. The proposed method can be then considered as an excellent alternative to the post-column detection of beta-agonists, phenols and polyphenols.  相似文献   

19.
The determination of uric acid in urine shows clinical importance, once it can be related to human organism dysfunctions, such as gout. An analytical procedure employing a multicommuted flow system was developed for the determination of uric acid in urine samples. Cu(II) ions are reduced by uric acid to Cu(I) that can be quantified by spectrophotometry in the presence of 2,2′-biquinoline 4,4′-dicarboxylic acid (BCA). The analytical response was linear between 10 and 100 μmol L− 1 uric acid with a detection limit of 3.0 μmol L− 1 (99.7% confidence level). Coefficient of variation of 1.2% and sampling rate of 150 determinations per hour were achieved. Per determination, 32 μg of CuSO4 and 200 μg of BCA were consumed, generating 2.0 mL of waste. Recoveries from 91 to 112% were estimated and the results for 7 urine samples agreed with those obtained by the commercially available enzymatic kit for determination of uric acid. The procedure required 100-fold dilution of urine samples, minimizing sample consumption and interfering effects. In order to avoid the manual dilution step, on-line sample dilution was achieved by a simple system reconfiguration attaining a sampling rate of 95 h− 1.  相似文献   

20.
A novel nickel phthalocyanine/iron oxide nanoparticle (NiTsPc/ION) nanocomposite electrode is proposed for the voltammetric detection of ethinyl estradiol. The method shows a wide linear range (0.07–30 μmol L−1, R2 >0.99), sensitivity of 0.308 μA cm−2/μmol L−1 and limit of detection of 7.8 nmol L−1 (3.3 Sb/b). Recoveries are above 95 % for quantification in tap and treatment plant water samples and synthetic urine. A single electrode can be used in seven consecutive runs (RSD=2.85 %) and responses of different electrodes vary only 7–9 %. The excellent sensing performance of the proposed sensor is ascribed to its porous morphology and efficient charge-transfer between ION and NiTsPc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号