首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, based on equilibrium control law proposed by Björk and Murgoci (2010), we study an optimal investment and reinsurance problem under partial information for insurer with mean–variance utility, where insurer’s risk aversion varies over time. Instead of treating this time-inconsistent problem as pre-committed, we aim to find time-consistent equilibrium strategy within a game theoretic framework. In particular, proportional reinsurance, acquiring new business, investing in financial market are available in the market. The surplus process of insurer is depicted by classical Lundberg model, and the financial market consists of one risk free asset and one risky asset with unobservable Markov-modulated regime switching drift process. By using reduction technique and solving a generalized extended HJB equation, we derive closed-form time-consistent investment–reinsurance strategy and corresponding value function. Moreover, we compare results under partial information with optimal investment–reinsurance strategy when Markov chain is observable. Finally, some numerical illustrations and sensitivity analysis are provided.  相似文献   

2.
In this paper, we study the optimal investment and optimal reinsurance problem for an insurer under the criterion of mean-variance. The insurer’s risk process is modeled by a compound Poisson process and the insurer can invest in a risk-free asset and a risky asset whose price follows a jump-diffusion process. In addition, the insurer can purchase new business (such as reinsurance). The controls (investment and reinsurance strategies) are constrained to take nonnegative values due to nonnegative new business and no-shorting constraint of the risky asset. We use the stochastic linear-quadratic (LQ) control theory to derive the optimal value and the optimal strategy. The corresponding Hamilton–Jacobi–Bellman (HJB) equation no longer has a classical solution. With the framework of viscosity solution, we give a new verification theorem, and then the efficient strategy (optimal investment strategy and optimal reinsurance strategy) and the efficient frontier are derived explicitly.  相似文献   

3.
假定保险公司既可以投资在风险资产上,同时又允许混合再保险.用经典的Cramér-Lundberg模型来近似保险公司的盈余过程,考虑了在破产概率最小限制下保险公司的最优投资和再保策略满足的HJB方程,证明了解的存在性和最优性,并对最优策略下的破产概率进行了近似估计.  相似文献   

4.
本文研究了均值-方差优化准则下,保险人的最优投资和最优再保险问题.我们用一个复合泊松过程模型来拟合保险人的风险过程,保险人可以投资无风险资产和价格服从跳跃-扩散过程的风险资产.此外保险人还可以购买新的业务(如再保险).本文的限制条件为投资和再保险策略均非负,即不允许卖空风险资产,且再保险的比例系数非负.除此之外,本文还引入了新巴塞尔协议对风险资产进行监管,使用随机二次线性(linear-quadratic,LQ)控制理论推导出最优值和最优策略.对应的哈密顿-雅克比-贝尔曼(Hamilton-Jacobi-Bellman,HJB)方程不再有古典解.在粘性解的框架下,我们给出了新的验证定理,并得到有效策略(最优投资策略和最优再保险策略)的显式解和有效前沿.  相似文献   

5.
In this paper, we investigate the optimal time-consistent investment–reinsurance strategies for an insurer with state dependent risk aversion and Value-at-Risk (VaR) constraints. The insurer can purchase proportional reinsurance to reduce its insurance risks and invest its wealth in a financial market consisting of one risk-free asset and one risky asset, whose price process follows a geometric Brownian motion. The surplus process of the insurer is approximated by a Brownian motion with drift. The two Brownian motions in the insurer’s surplus process and the risky asset’s price process are correlated, which describe the correlation or dependence between the insurance market and the financial market. We introduce the VaR control levels for the insurer to control its loss in investment–reinsurance strategies, which also represent the requirement of regulators on the insurer’s investment behavior. Under the mean–variance criterion, we formulate the optimal investment–reinsurance problem within a game theoretic framework. By using the technique of stochastic control theory and solving the corresponding extended Hamilton–Jacobi–Bellman (HJB) system of equations, we derive the closed-form expressions of the optimal investment–reinsurance strategies. In addition, we illustrate the optimal investment–reinsurance strategies by numerical examples and discuss the impact of the risk aversion, the correlation between the insurance market and the financial market, and the VaR control levels on the optimal strategies.  相似文献   

6.
In this paper, we consider the time-consistent reinsurance–investment strategy under the mean–variance criterion for an insurer whose surplus process is described by a Brownian motion with drift. The insurer can transfer part of the risk to a reinsurer via proportional reinsurance or acquire new business. Moreover, stochastic interest rate and inflation risks are taken into account. To reduce the two kinds of risks, not only a risk-free asset and a risky asset, but also a zero-coupon bond and Treasury Inflation Protected Securities (TIPS) are available to invest in for the insurer. Applying stochastic control theory, we provide and prove a verification theorem and establish the corresponding extended Hamilton–Jacobi–Bellman (HJB) equation. By solving the extended HJB equation, we derive the time-consistent reinsurance–investment strategy as well as the corresponding value function for the mean–variance problem, explicitly. Furthermore, we formulate a precommitment mean–variance problem and obtain the corresponding time-inconsistent strategy to compare with the time-consistent strategy. Finally, numerical simulations are presented to illustrate the effects of model parameters on the time-consistent strategy.  相似文献   

7.
In our model, the insurer is allowed to buy reinsurance and invest in a risk-free asset and a risky asset. The claim process is assumed to follow a Brownian motion with drift, while the price process of the risky asset is described by the constant elasticity of variance (CEV) model. The Hamilton-Jacobi-Bellman (HJB) equation associated with the optimal reinsurance and investment strategies is established, and solutions are found for insurers with CRRA or CARRA utility.  相似文献   

8.
In this paper, we investigate an optimal reinsurance and investment problem for an insurer whose surplus process is approximated by a drifted Brownian motion. Proportional reinsurance is to hedge the risk of insurance. Interest rate risk and inflation risk are considered. We suppose that the instantaneous nominal interest rate follows an Ornstein–Uhlenbeck process, and the inflation index is given by a generalized Fisher equation. To make the market complete, zero-coupon bonds and Treasury Inflation Protected Securities (TIPS) are included in the market. The financial market consists of cash, zero-coupon bond, TIPS and stock. We employ the stochastic dynamic programming to derive the closed-forms of the optimal reinsurance and investment strategies as well as the optimal utility function under the constant relative risk aversion (CRRA) utility maximization. Sensitivity analysis is given to show the economic behavior of the optimal strategies and optimal utility.  相似文献   

9.
This paper investigates the optimal time-consistent policies of an investment-reinsurance problem and an investment-only problem under the mean-variance criterion for an insurer whose surplus process is approximated by a Brownian motion with drift. The financial market considered by the insurer consists of one risk-free asset and multiple risky assets whose price processes follow geometric Brownian motions. A general verification theorem is developed, and explicit closed-form expressions of the optimal polices and the optimal value functions are derived for the two problems. Economic implications and numerical sensitivity analysis are presented for our results. Our main findings are: (i) the optimal time-consistent policies of both problems are independent of their corresponding wealth processes; (ii) the two problems have the same optimal investment policies; (iii) the parameters of the risky assets (the insurance market) have no impact on the optimal reinsurance (investment) policy; (iv) the premium return rate of the insurer does not affect the optimal policies but affects the optimal value functions; (v) reinsurance can increase the mean-variance utility.  相似文献   

10.
This paper studies the optimal consumption–investment–reinsurance problem for an insurer with a general discount function and exponential utility function in a non-Markovian model. The appreciation rate and volatility of the stock, the premium rate and volatility of the risk process of the insurer are assumed to be adapted stochastic processes, while the interest rate is assumed to be deterministic. The object is to maximize the utility of intertemporal consumption and terminal wealth. By the method of multi-person differential game, we show that the time-consistent equilibrium strategy and the corresponding equilibrium value function can be characterized by the unique solutions of a BSDE and an integral equation. Under appropriate conditions, we show that this integral equation admits a unique solution. Furthermore, we compare the time-consistent equilibrium strategies with the optimal strategy for exponential discount function, and with the strategies for naive insurers in two special cases.  相似文献   

11.
This paper considers the robust optimal reinsurance–investment strategy selection problem with price jumps and correlated claims for an ambiguity-averse insurer (AAI). The correlated claims mean that future claims are correlated with historical claims, which is measured by an extrapolative bias. In our model, the AAI transfers part of the risk due to insurance claims via reinsurance and invests the surplus in a financial market consisting of a risk-free asset and a risky asset whose price is described by a jump–diffusion model. Under the criterion of maximizing the expected utility of terminal wealth, we obtain closed-form solutions for the robust optimal reinsurance–investment strategy and the corresponding value function by using the stochastic dynamic programming approach. In order to examine the influence of investment risk on the insurer’s investment behavior, we further study the time-consistent reinsurance–investment strategy under the mean–variance framework and also obtain the explicit solution. Furthermore, we examine the relationship among the optimal reinsurance–investment strategies of the AAI under three typical cases. A series of numerical experiments are carried out to illustrate how the robust optimal reinsurance–investment strategy varies with model parameters, and result analyses reveal some interesting phenomena and provide useful guidances for reinsurance and investment in reality.  相似文献   

12.
In this article, we consider the optimal reinsurance and dividend strategy for an insurer. We model the surplus process of the insurer by the classical compound Poisson risk model modulated by an observable continuous-time Markov chain. The object of the insurer is to select the reinsurance and dividend strategy that maximizes the expected total discounted dividend payments until ruin. We give the definition of viscosity solution in the presence of regime switching. The optimal value function is characterized as the unique viscosity solution of the associated Hamilton–Jacobi–Bellman equation and a verification theorem is also obtained.  相似文献   

13.
在模型不确定条件下,研究以破产概率最小化为目标的模糊厌恶型保险公司的最优投资再保险问题. 假设保险公司可投资于一种风险资产,也可购买比例再保险. 分别考虑风险资产的价格过程服从随机波动率模型和非随机波动率模型的两种情况,根据动态规划原理建立相应的HJB方程,得到保险公司的最优鲁棒投资再保险策略和价值函数的解析解. 最后,通过数值模拟分析了各模型参数对最优策略和价值函数的影响.  相似文献   

14.
This paper investigates the investment and reinsurance problem in the presence of stochastic volatility for an ambiguity-averse insurer (AAI) with a general concave utility function. The AAI concerns about model uncertainty and seeks for an optimal robust decision. We consider a Brownian motion with drift for the surplus of the AAI who invests in a risky asset following a multiscale stochastic volatility (SV) model. We formulate the robust optimal investment and reinsurance problem for a general class of utility functions under a general SV model. Applying perturbation techniques to the Hamilton–Jacobi–Bellman–Isaacs (HJBI) equation associated with our problem, we derive an investment–reinsurance strategy that well approximates the optimal strategy of the robust optimization problem under a multiscale SV model. We also provide a practical strategy that requires no tracking of volatility factors. Numerical study is conducted to demonstrate the practical use of theoretical results and to draw economic interpretations from the robust decision rules.  相似文献   

15.
杨鹏  林祥 《经济数学》2012,(1):42-46
对跳-扩散风险模型,研究了最优投资和再保险问题.保险公司可以购买再保险减少理赔,保险公司还可以把盈余投资在一个无风险资产和一个风险资产上.假设再保险的方式为联合比例-超额损失再保险.还假设无风险资产和风险资产的利率是随机的,风险资产的方差也是随机的.通过解决相应的Hamilton-Jacobi-Bellman(HJB)方程,获得了最优值函数和最优投资、再保险策略的显示解.特别的,通过一个例子具体的解释了得到的结论.  相似文献   

16.
In this paper, we study the problem of optimal investment and proportional reinsurance coverage in the presence of inside information. To be more precise, we consider two firms: an insurer and a reinsurer who are both allowed to invest their surplus in a Black–Scholes‐type financial market. The insurer faces a claims process that is modeled by a Brownian motion with drift and has the possibility to reduce the risk involved with this process by purchasing proportional reinsurance coverage. Moreover, the insurer has some extra information at her disposal concerning the future realizations of her claims process, available from the beginning of the trading interval and hidden from the reinsurer, thus introducing in this way inside information aspects to our model. The optimal investment and proportional reinsurance decision for both firms is determined by the solution of suitable expected utility maximization problems, taking into account explicitly their different information sets. The solution of these problems also determines the reinsurance premia via a partial equilibrium approach. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, the insurer is allowed to buy reinsurance and allocate his money among three financial securities: a defaultable corporate zero-coupon bond, a default-free bank account, and a stock, while the instantaneous rate of the stock is described by an Ornstein-Uhlenbeck process. The objective is to maximize the exponential utility of the terminal wealth. We decompose the original optimization problem into two subproblems: a pre-default case and a post-default case. Using dynamic programming principle, and then solving the corresponding HJB equations, we derive the closed-form solutions for the optimal reinsurance and investment strategies and the corresponding value functions  相似文献   

18.
曾燕  李仲飞 《系统科学与数学》2009,29(11):1496-1506
根据监管规定,保险公司必须提存一定水平的准备金.鉴于此,保险公司必须保持盈余不低于这个准备金水平.将保险公司盈余首达该准备金水平的时刻定义为``破产"时刻,以最小化``破产"概率为目标;假设保险公司可购买比例再保险, 其盈余过程由扩散模型刻画且盈余按连续复利方式计算利息, 其中利力为常数; 借助随机动态规划方法, 通过求解相应的HJB方程得到了最优值函数与最优比例再保险策略的解析式. 最后给出了经济解释与数值算例.  相似文献   

19.
In this paper, under the criterion of maximizing the expected exponential utility of terminal wealth, we study the optimal proportional reinsurance and investment policy for an insurer with the compound Poisson claim process. We model the price process of the risky asset to the constant elasticity of variance (for short, CEV) model, and consider net profit condition and variance reinsurance premium principle in our work. Using stochastic control theory, we derive explicit expressions for the optimal policy and value function. And some numerical examples are given.  相似文献   

20.
We consider a problem of optimal reinsurance and investment with multiple risky assets for an insurance company whose surplus is governed by a linear diffusion. The insurance company’s risk can be reduced through reinsurance, while in addition the company invests its surplus in a financial market with one risk-free asset and n risky assets. In this paper, we consider the transaction costs when investing in the risky assets. Also, we use Conditional Value-at-Risk (CVaR) to control the whole risk. We consider the optimization problem of maximizing the expected exponential utility of terminal wealth and solve it by using the corresponding Hamilton-Jacobi-Bellman (HJB) equation. Explicit expression for the optimal value function and the corresponding optimal strategies are obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号