首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
在B3LYP/6-311++G(2df,p)水平上优化了标题反应驻点物种的几何构型, 并在相同水平上通过频率计算和内禀反应坐标(IRC)分析对过渡态结构及连接性进行了验证. 采用双水平计算方法HL//B3LYP/6-311++G(2df,p)对所有驻点及部分选择点进行了单点能校正, 构建了CH2SH+NO2反应体系的单重态反应势能剖面. 研究结果表明, CH2SH与NO2反应体系存在4条主要反应通道, 两个自由基中的C与N首先进行单重态耦合, 形成稳定的中间体HSCH2NO2 (a). 中间体a经过C—N键断裂和H(1)—O(2)形成过程生成主要产物P1 (CH2S+trans-HONO), 此过程需克服124.1 kJ•mol-1的能垒. 中间体a也可以经过C—N键断裂及C—O键形成转化为中间体HSCH2ONO (b), 此过程的能垒高达238.34 kJ•mol-1. b再经过一系列的重排异构转化得到产物P2 (CH2S+cis-HONO), P3 (CH2S+HNO2)和P4 (SCH2OH+NO). 所有通道均为放热反应, 反应能分别为-150.37, -148.53, -114.42和-131.56 kJ•mol-1. 标题反应主通道R→a→TSa/P1→P1的表观活化能为-91.82 kJ•mol-1, 此通道在200~3000 K温度区间内表观反应速率常数三参数表达式为kCVT/SCT=8.3×10-40T4.4 exp(12789.3/T) cm3•molecule-1•s-1.  相似文献   

2.
在G3B3,CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上详细研究了CH3SH与基态NO2的微观反应机理.在B3LYP/6-311++G(d,p)水平得到了反应势能面上所有反应物、过渡态和产物的优化构型,通过振动频率分析和内禀反应坐标(IRC)跟踪验证了过渡态与反应物和产物的连接关系.在CCSD(T)/6-311++G(d,p)和G3B3水平计算了各物种的能量,得到了反应势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),分别计算了在200~3000K温度范围内的速率常数kTST,kCVT和kCVT/SCT.研究结果表明,该反应体系共存在5个反应通道,其中N进攻巯基上H原子生成CH3S+HNO2的通道活化势垒较低,为主要反应通道.动力学数据也表明,该通道在200~3000K计算温度范围内占绝对优势,拟合得到的速率常数表达式为k1CVT/SCT=1.93×10-16T0.21exp(-558.2/T)cm3·molecule-1·s-1.  相似文献   

3.
采用密度泛函方法(B3LYP)在6-311+G(d,p)基组水平上研究了CH3CH2S自由基H迁移异构化以及裂解反应的微观动力学机理. 在QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)+ZPE水平上进行了单点能校正. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了在200~2000 K温度区间内的速率常数kTST和kCVT, 同时获得了经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT. 研究结果表明, CH3CH2S自由基1,2-H迁移、1,3-H迁移、C—C键断裂和β-C—H键断裂反应的势垒ΔE≠分别为149.74, 144.34, 168.79和198.29 kJ/mol. 当温度低于800 K时, 主要发生1,2-H迁移反应, 高于1800 K时, 主要表现为C—C键断裂反应, 在1300—1800 K范围内, 1,3-H迁移反应是优势通道, 在计算的整个温度段内, β-C—H键断裂反应可以忽略.  相似文献   

4.
采用密度泛函理论B3LYP方法,在6-311++G(d,p)基组水平研究了HO2与CH2S的微观反应机理.在CCSD(T)/6-311++G(d,p)//B3LYP/6-311++G(d,p)水平上获得了势能面.利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT),计算了反应通道在2...  相似文献   

5.
刘艳  任宏江  刘亚强  王渭娜 《化学学报》2009,67(22):2541-2548
采用量子化学QCISD(T)/6-311++G(d,p)//B3LYP/6-311+G(d,p)方法研究了H2FCS单分子分解反应的微观动力学性质, 构建了反应势能剖面. 利用经典过渡态理论(TST)与变分过渡态理论(CVT)并结合小曲率隧道效应模型(SCT), 分别计算了在200~3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明, H2FCS可经过不同的反应通道生成10种小分子产物, 脱H反应和HF消去反应为标题反应的主反应通道, 其中HF消去反应产物HCS可由两条反应通道生成. 在200~3000 K温度区间内得到三条反应通道的表观反应速率常数三参数表达式分别为 , 和 . 速率常数计算结果显示, 量子力学隧道效应在低温区间对反应速率常数的影响显著, 而变分效应在计算温度范围内可以忽略.  相似文献   

6.
D-苯丙氨酸与Cu(1S0, 3d10)气相反应理论研究   总被引:1,自引:0,他引:1  
程伟贤  陈鸿雁  张义平  冯宇  李涛洪  曹槐 《化学学报》2007,65(18):1956-1964
用量子化学密度泛函(DFT)方法研究D-苯丙氨酸与一价基态金属阳离子Cu在气相中反应的机理. 在B3LYP/6-31G*水平上, 优化了反应包含的4个反应通道的反应物、中间体、过渡态和产物的几何构型, 并采用B3LYP/DZVP, B3LYP/[6-311+G**(C,H,O)+Lanl2dz(Cu)], B3LYP/6-311+G**, MP2/6-311+G** 等方法对各驻点进行了单点能计算. 通过对计算结果的分析, 获得了其单重态反应势能面的一般轮廓、各驻点几何构型优化参数, 明确了其反应机理.  相似文献   

7.
H3PO→H2POH异构化反应的直接动力学研究   总被引:3,自引:0,他引:3  
在QCISD(T)/6-311C++G(2df,2pd)//QCISD/6-311C++G(d,p)+ZPE水平上,对H3PO的异构化反应H3PO→(1)H2POH(trans)→(2)H2POH(cis)进行了计算研究.结果表明,H原子由P原子向O原子迁移反应(1)的能垒为250.0kJ/mol,是反应速率控制步骤,而O_H键绕P_O键旋转的构型转化反应(2)的能垒只为12.3kJ/mol.利用经典过渡态理论(TST)与变分过渡态理论(CVT)分别计算了反应(1)在200~2000K温度区间内的速率常数kTST和kCVT,获得了经小曲率隧道效应(SCT)及Eckart模型校正后的速率常数kTST/Eckart和kCVT/SCT.对只涉及H原子迁移的反应(1),量子力学隧道效应的影响在低温段非常明显,而变分效应对反应速率常数的影响很小.  相似文献   

8.
在B3LYP/6-311++G(d,p)水平上研究了HOSO+NO的反应机理. 优化得到了反应势能面上各驻点的几何构型, 通过内禀反应坐标(IRC)确认了反应物、中间体、过渡态和产物的相关性. 在CCSD(T)/6-311++G(d,p)水平上对计算得到的构型进行了能量校正. 应用经典过渡态理论(TST)与变分过渡态理论(CVT), 并结合小曲率隧道(SCT)效应模型校正的方法计算了标题反应在200-3000 K温度范围内的速率常数kTST、kCVT和kCVT/SCT. 计算结果表明: HOSO+NO反应在单重态和三重态条件下均可发生, 其中单重态反应为主反应通道, HNO+SO2为主产物. 并利用电子密度拓扑分析方法研究主反应通道反应过程中的化学键变化.  相似文献   

9.
类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应   总被引:1,自引:0,他引:1  
采用DFT B3LYP和QCISD方法研究了类硅烯H2C=SiLiBr与RH (R=F, OH, NH2)的插入反应. 在B3LYP/6- 311+G(d,p)水平上优化了反应势能面上的驻点构型. 结果表明, H2C=SiLiBr与HF, H2O或NH3发生插入反应的机理相同. QCISD/6-311++G(d,p)//B3LYP/6-311+G(d,p)计算的三个反应的势垒分别为148.62, 164.42和165.07 kJ•mol-1, 反应热分别为-69.63, -43.02和-28.27 kJ•mol-1. 相同条件下发生插入反应时, 反应活性都是H—F>H—OH>H—NH2.  相似文献   

10.
在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE水平上对反应·CHCHCH3+NO进行了计算, 并建立了其单重态的反应势能面. 在该反应中, 分别找到生成P1(CH3CHO+HCN), P2(CH3CHO+HNC), P3(CH3CN+HCHO), P4(CH3CCH+HNO)的4条产物通道, 其中·CHCHCH3和NO中的氮原子直接连接形成m1(trans-CH3CHCHNO), m1经过顺反异构形成m2(cis-CH3CHCHNO), m2再经过CCNO四元环合, 然后发生环解离, 最后生成产物P1(CH3CHO+HCN)是最可行的产物通道, 其余三条通道为次要产物通道. 该体系中生成P1的反应路径与同类体系·C2H3+NO的主要反应路径相类似, 两者的差别是前者为动力学可行的反应, 而后者为动力学不可行反应, 这使得·CHCHCH3+NO反应比·C2H3+NO反应更具有实际意义.  相似文献   

11.
二重态的N3O2中性分子作为中间体, 在N3O2阴离子的光解离反应和NO+N2O←→N2+NO2反应中均起重要作用. 在CCSD(T)/6-311G(d,p)//B3LYP/6-311G(d,p)+ZPE的水平上, 对这两个反应进行了理论计算. 结果表明, 在N3O2阴离子的光解离反应中, 该阴离子先在光照下解离为与其具有相同的W构型的中性分子和一个电子, 这个中性分子是一个过渡态, 它将打破C2v构型变成具有Cs对称性的W型中间异构体, 然后再经过一个过渡态, 裂解成N2O+NO两个小分子. 这个裂解过程的能垒非常低(5.96 kJ/mol), 因此在实验中很难检测到W型的中间异构体. 在另一个重要的[N3O2]体系的反应(NO+N2O←→N2+NO2)中, 找到了两条反应通道, 其中不经过中间异构体的一步转化通道更为可行.  相似文献   

12.
CH2=CHCl与O(3P)反应的理论研究   总被引:1,自引:0,他引:1  
胡武洪  申伟 《化学学报》2005,63(12):1042-1048
用量子化学密度泛函理论和QCISD (Quadratic configuration interaction calculation)方法, 对O(3P)与CH2CHCl的反应进行了理论研究. 在UB3LYP/6-311++G(d,p), UB3LYP/6-31++G(3df, 3pd)计算水平上, 优化了反应物、产物、中间体和过渡态的几何构型, 并在UQCISD(T)/6-311++G(2df,2pd)水平上计算了单点能量. 为了确证过渡态的真实性, 在UB3LYP/6-311++G(3df,3pd)水平上进行了内禀坐标(IRC)计算和频率分析, 并确定了反应机理. 研究结果表明, 反应主要产物为CH2CHO和Cl.  相似文献   

13.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

14.
齐斌  晁余涛 《化学学报》2007,65(19):2117-2123
在6-311+G(2d,2p)水平下, 采用密度泛函理论(DFT)的B3LYP方法, 研究了Criegee 自由基CH2O2与H2O的反应. 结果表明反应存在三个通道: CH2O2+H2O®HOCH2OOH (R1); CH2O2+H2O®HCO+OH+H2O (R2); CH2O2+H2O®HCHO+H2O2 (R3), 各通道的势垒高度分别为43.35, 85.30和125.85 kJ/mol. 298 K下主反应通道(R1)的经典过渡态理论(TST)与变分过渡态理论(CVT)的速率常数kTSTkCVT均为2.47×10-17 cm3•molecule-1•s-1, 而经小曲率隧道效应模型(SCT)校正后的速率常数kCVT/SCT 5.22×10-17 cm3•molecule-1•s-1. 另外, 还给出了200~2000 K 温度范围内拟合得到的速率常数随温度变化的三参数Arrhenius方程.  相似文献   

15.
用密度泛函理论(DFT)研究了甲醇与一氧化碳的微观反应机理. 在B3LYP/6-311++G(d,p)水平上优化了反应物、过渡态及产物的几何构型, 并通过振动分析和内禀反应坐标方法(IRC)分别确认了过渡态的结构与反应途径. 在CCSD/6-311++G(d,p)水平上进行能量校正, 并根据计算的势能面探讨了CH3OH+CO反应机理. 结果表明, CH3OH+CO反应体系有三个可能的反应通道, 产物分别为甲酸甲酯、乙酸、羟基乙醛. 在无催化条件下, 计算得到生成甲酸甲酯、乙酸和羟基乙醛的反应活化能分别是364.715, 460.775和611.402 kJ•mol-1, 生成甲酸甲酯和羟基乙醛的反应为吸热反应, 而生成乙酸的反应为放热反应.  相似文献   

16.
采用密度泛函理论B3LYP方法研究了SiH2自由基与HNCO的反应机理, 并在B3LYP/6-311++G**水平上对反应物、中间体、过渡态进行了全几何参数优化, 通过频率分析和内禀反应坐标(IRC)确定了中间体和过渡态. 为了得到更精确的能量值, 又用QCISD(T)/6-311++G**方法计算了在B3LYP/6-311++G**水平优化后的各个驻点的相对能量. 计算结果表明SiH2自由基与HNCO的反应有五条反应通道, 其中顺式反应通道SiH2+HNCO→IM3→ TS4→IM5→TS5→IM6→SiH2NH+CO反应能垒最低, 为主反应通道.  相似文献   

17.
CCl2与CH2O插入反应机理及热力学与动力学特性的理论研究   总被引:3,自引:0,他引:3  
李志锋  吕玲玲  康敬万 《化学学报》2007,65(11):1019-1026
采用密度泛函B3LYP/6-311G*和高级电子相关耦合簇[CCSD(T)/6-311G*]方法计算研究了CCl2与CH2O的插入反应机理, 全参数优化了反应势能面各驻点的几何构型, 用内禀反应坐标(IRC)和频率分析方法, 对过渡态进行了验证. 研究结果表明: 反应(1)是单重态二氯卡宾与甲醛插入反应的主反应通道. 该反应由两步组成: (i)两反应物首先经一无能垒的放热反应, 放出9.73 kJ•mol-1的热量, 生成一中间体IM1, (ii)中间体IM1经一过渡态TS1, 发生H的转移, 生成产物P1, 其势垒为47.32 kJ•mol-1. 用RRKM-TST理论计算了300~1900 K温度范围内反应(1)的压力效应. 用经Wigner校正的Eyring过渡态理论研究了不同温度下该反应的热力学和动力学性质. 从热力学和动力学角度综合分析, 在高压限101325 Pa下, 该反应进行的适宜温度范围为400~1800 K, 如此, 反应既有较大的自发趋势和平衡常数, 又具有较快的反应速率.  相似文献   

18.
采用UB3LYP/6-311++G(d,p)//UB3LYP/6-31G(d)方法对H2NO·自由基和顺-2-丁烯反应的势能面进行了研究, 发现了三类共5条可能的反应通道: L4-Ⅰ和L4-Ⅱ(夺氢-加成), L4-Ⅲ和L4-Ⅳ(加成-加成-消除), L4-Ⅴ(加成-加成-消除-催化转换). 动力学分析表明, 该反应为加成-加成-消除过程.  相似文献   

19.
在MP2/6-311++G(d,p)和QCISD(t)/6-311++G(3df,2p)(单点)水平下计算得到了包括8个异构体和12个过渡态的HPO2体系势能面. 在势能面上, 异构体cis-HOPO(E1)的能量是最低的, 其次是trans-HOPO(E2)和HPO(O)(C2V, E3), 能量分别比cis-HOPO高10.99和48.36 kJ/mol. 根据体系的势能面, 只有异构体E1和E3具有较高的动力学稳定性, 在实验中应该可以观测到. PH和O2直接反应生成的cis-HPOO(E5)和trans- HPOO(E6)经过几步势垒较低的异构化过程就可以异构化为具有较高动力学稳定性的产物E1; 而OH和PO反应可直接生成E1. 计算结果较好地解释了相关实验.  相似文献   

20.
贫氢分子CnH是燃烧火焰、行星大气中的重要的中间体.这些分子与其它一些分子或自由基的反应在星际化学中起着非常重要的作用.虽然这些分子的电子结构和光谱性质已经进行了广泛的研究,但是研究这些反应的机理和动力学性质也是亟需的.因此,我们采用直接动力学方法对线性分子丁二炔自由基C4H(CCCCH)夺氢气(H2)分子中HAT的反应的微观机理和动力学性质进行了理论研究.本研究分别在BB1K/6-311+G(2d,2p),B3LYP/6-311+G(2d,2p)和M06-2x/6-311+G(2d,2p)水平上优化得到了各稳定点的结构及振动频率.为了得到更为可靠的反应能量和势能面信息,在BB1K/6-311+G(2d,2p)优化结构的基础上用CCSD(T)/aug-cc-pVTZ水平进行了单点能量校正.对于此反应研究了两条不同的氢吸附通道,C4H(C1C2C3C4H)中的C1和C4分别吸氢,即通道1(R1)和通道2(R2).计算得出:通道1和通道2的能垒分别为3.58 kcal/mol和26.56 kcal/mol,结果表明C4H中C1端吸氢是主要通道.反应过程中的电子转移可以为理解氢原子转移(HAT)提供重要的线索,因此,我们利用NBO对反应过程中的电子转移行为进行了详细的分析.本工作运用经典过渡态理论(VTST)与变分过渡态理论(CVT)和变分过渡态理论结合小曲率隧道效应校正(CVT/SCT)的方法计算了该反应在40~1000 K温度区间的速率常数.除对于最低频率的配分函数采用了阻尼内转动近似外,其它频率都采用谐振子模型处理.计算得到的总的CVT/SCT反应速率常数与已有的实验值符合得很好.我们还提供了40~1000K温度范围内的三参数Arrhenius表达式.这些公式有利于今后在较宽的温度范围内迄今没有实验数据的反应的研究.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号