首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
A novel method for the determination of cobalt(II) by stripping voltammetry is described. It involves an adsorptive accumulation of the cobalt(II)-2-aminocyclopentene-1-dithiocarboxylic acid complex on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the complex at –1.4 V at pH = 9 (vs. Ag/AgCl). The effects of various experimental parameters on the catalytic current were investigated. An accumulation time of 60 s results in a low experimental limit of detection of 0.1 ng/mL of Co(II), and 0.50 to 40.0 ng/mL of cobalt can be determined. The relative standard deviation at 0.50 ng/mL is 2.8%. Possible interferences from co-existing ions were also investigated. Received: 17 August 1998 / Revised: 16 November 1998 / Accepted: 20 November 1998  相似文献   

2.
A novel method for the determination of cobalt(II) by stripping voltammetry is described. It involves an adsorptive accumulation of the cobalt(II)-2-aminocyclopentene-1-dithiocarboxylic acid complex on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the catalytic reduction current of the complex at –1.4 V at pH = 9 (vs. Ag/AgCl). The effects of various experimental parameters on the catalytic current were investigated. An accumulation time of 60 s results in a low experimental limit of detection of 0.1 ng/mL of Co(II), and 0.50 to 40.0 ng/mL of cobalt can be determined. The relative standard deviation at 0.50 ng/mL is 2.8%. Possible interferences from co-existing ions were also investigated. Received: 17 August 1998 / Revised: 16 November 1998 / Accepted: 20 November 1998  相似文献   

3.
《Analytical letters》2012,45(3):465-478
ABSTRACT

A technique is presented for the determination of trace amounts of copper(II) by adsorptive cathodic stripping voltammetry. The procedure is based on adsorptive accumulation of copper(II)-Alizarin Red S (ARS) complex on a hanging mercury drop electrode, followed by a stripping voltammetric measurement of the reduction current of the adsorbed complex at -0.16 V (vs. Ag/AgCl). The height of the copper -ARS reduction peak is linearly dependent upon the copper(II) concentration between 0.2-15 and 15-500 ng.ml?1. The detection limit of the technique is 0.05 ng.ml?1 copper(II) for a collection time of 1 minute. The method is free from most interferences. The procedure has been successfully applied to the determination of trace amounts of copper(II) in some analytical grade salts.  相似文献   

4.
The effect of binary metal deposits on a cylindrical carbon-fiber microelectrode on the determination of metals by direct and stripping voltammetry was studied. The electrolytic deposition of a binary system of copper and thallium, cadmium, lead, or mercury on the electrode in an alkaline solution resulted in the disappearance of the electroreduction peak of dissolved oxygen in the potential range from -0.8 to -1.4 V and in a decrease in the background current. Under the conditions of limited diffusion, the peak currents of Ni(II), Co(II), and Zn(II) in differential pulse voltammograms were 3–7 times higher than those calculated for a reversible electrode process under the conditions of semi-infinite diffusion. Because of this, the determination limit for metal ions in direct voltammetry was lowered to 1 X 10-6 M. With a binary copper-thallium system, the peak current of zinc(II) reduction can be be detected in the presence of 5000-fold molar amounts of copper(II). The deposition of binary copper-lead and copper-thallium systems under the conditions of limited diffusion reduced the effect of negative interaction between the components of these systems and made possible the determination of lead(II) and thallium(I) by stripping voltammetry using additional peaks.  相似文献   

5.
A adsorptive-catalytic stripping voltammetry has received considerable attention in recent years. However,the method has been used to only a limited extent of inorganic ions. And no method for organic compounds has been reported so far. In this paper,the adsorptive properties of Medroprogesterone Acetate(MPA) on a hanging mercury electrode and the mechanism of catalytic wave in the presence of KIO3 were studied. A new sensitive adsorptive-catalytic stripping voltammetry for the determination of MPA is proposed based on the combination of adsorptive accumulation of MPA with the regeneration of the reactant MPA by the homogeneous catalytic reaction between KIO3 and intermediate radical HMPA formed in the reduction process of MPA. The dual amplification resulting from adsorptive-catalytic effects produces excellent sensitivity. The adsorptive-catalytic stripping process of MPA differs from inorganic ions in catalytic mechanism. The catalytic current is produced by the chemical reaction between KIO3 and HMPA, instead of the catalytic current of complexation produced at the mercury electrode surface.  相似文献   

6.
Determination of copper (Cu), zinc (Zn) and manganese (Mn) micronutrients in soil samples have been studied for an efficient fertiliser application. Plant-available micronutrients of soils were extracted with DTPA extraction procedure, then differential pulse stripping voltammetry (DPSV) and square wave stripping voltammetry (SWSV) methods were performed with inexpensive and disposable pencil graphite electrode for determination of Cu(II), Zn(II) and Mn(II). Parameters such as deposition potential, deposition time, pH and concentration of the supporting electrolyte were optimised for these ions. Under optimised conditions, the limits of detection were found as 0.01 mg L?1 for Cu(II) and 0.02 mg L?1 for Zn(II) and 0.25 mg L?1 for Mn(II). Relative standard deviation (%RSD) was 6.80, 8.86 and 3.29 for Cu(II), Zn(II) and Mn(II), respectively. The experimental study was conducted using a flame atomic absorption spectroscopy. The described stripping voltammetry methods were successfully applied for the determination of Mn(II), Cu(II) and Zn(II) in soil samples.  相似文献   

7.
Differential pulse anodic stripping voltammetry (DPASV), potentiometry with a copper ion-selective electrode and a kinetic photometric method were used to determine copper species in white wines. The kinetic method is based on the catalytic effect of labile copper(II) species on the oxidation of 3-hydroxybenzaldehyde azine by potassium peroxidisulfate in an ammonical medium at room temperature. The total copper concentrations were determined by flame atomic absorption spectrometry. Free copper(II) ions, labile and tightly bound copper species could be quantified in 16 non pre-treated wine samples. Received: 13 August 1996 / Revised: 28 October 1996 / Accepted: 29 November 1996  相似文献   

8.
Differential pulse anodic stripping voltammetry (DPASV), potentiometry with a copper ion-selective electrode and a kinetic photometric method were used to determine copper species in white wines. The kinetic method is based on the catalytic effect of labile copper(II) species on the oxidation of 3-hydroxybenzaldehyde azine by potassium peroxidisulfate in an ammonical medium at room temperature. The total copper concentrations were determined by flame atomic absorption spectrometry. Free copper(II) ions, labile and tightly bound copper species could be quantified in 16 non pre-treated wine samples. Received: 13 August 1996 / Revised: 28 October 1996 / Accepted: 29 November 1996  相似文献   

9.
《Electroanalysis》2005,17(21):1970-1976
The oxidative electropolymerization of the (3‐pyrrol‐1‐ylpropyl)malonic acid monomer 1 is a simple and reproducible one‐step procedure for the synthesis of complexing polymer film modified electrodes, which have been applied to the electroanalysis of Cu(II), Pb(II), Cd(II) and Hg(II) ions by preconcentration upon complexation, followed by anodic stripping analysis. The detection limits were determined from square‐wave voltammetry at 0.5 nM, 5 nM, 50 nM and 0.2 μM for Pb(II), Cu(II), Hg(II) and Cd(II), respectively, after 10 min preconcentration. The modified electrodes showed a better selectivity toward copper(II) ions. Analysis of copper in a tap water sample agreed well with ICPMS analysis results.  相似文献   

10.
《Analytical letters》2012,45(19):2141-2157
Abstract

A technique is presented for the determination of trace concentrations of copper (II) in natural water samples by cathodic stripping voltammetry of a film of copper-catechol complex ions adsorbed on the hanging mercury drop electrode. The peak height of the copper-catechol reduction peak is linearly dependent upon the copper (II) concentration between 10?10 and 10?7 M. The detection limit of the technique is below 10?10 M copper (II) for a collection time of 3 minutes, but the sensitivity can be further increased four-fold by collecting for 15 minutes. The sensitivity is reduced by high concentrations of competing trace metals and of surfactants, which necessitate the use of standard additions to the sample.  相似文献   

11.
The complex formation between uric acid and zinc, cadmium and lead ions has been investigated using differential pulse polarography in 0.01M NaNO(3). It is found that the complexes formed by Cd(II) and Pb(II) ions with uric acid have the stoichiometry of 1:2 and the logarithmic values of the apparent stability constant are 9.47 and 11.7, respectively. On the other hand, zinc(II) ions do not give any indication of complexation with uric acid. A sensitive voltammetric method is developed for the quantitative determination of uric acid. This method is based on controlled adsorptive preconcentration of uric acid on the hanging mercury drop electrode (HMDE), followed by tracing the voltammogram in the cathodic going potential scan. The modes used are direct current stripping voltammetry (DCSV) and differential pulse stripping voltammetry (DPSV). The detection limits found were 8 x 10(-9)M (quiescent period 15 sec) by DPSV and 1.6 x 10(-8)M by DCSV.  相似文献   

12.
An approximate but general theoretical treatment for reversible and irreversible stripping polarographic systems is presented. The treatment is based on the development of an average current (i), which at plating times exceeding 15 s. is analogous to the instantaneous current in d.c. polarography. Plots of i vs. (E – E°) are generated for reversible and irreversible waves and are discussed for the reduction of copper(II) in sea water as an example. From stripping polarography and anodic stripping voltammetry, this work indicates that the overall reduction of copper(II) at the natural pH is kinetically hindered and thus is “irreversible”. The reversibility and the determination of copper in sea water by a.s.v. can be improved by acidification and/or by the addition of ethylenediamine.  相似文献   

13.
The use of a new carbon material — carbosital — for electrodes is reviewed. The behaviour of copper deposited on the carbosital electrode surface in anodic stripping voltammetry and chronopotentiometry is discussed. In anodic stripping voltammetry with a rotating carbosital disk electrode, the peak current and the number of coulombs involved in stripping copper are directly proportional to the square root of the electrode rotation rate during preelectroiysis; the peak current is directly proportional to the potential scan rate during stripping. For anodic stripping voltammetry and anodic stripping chronopotentiometry, linear calibration graphs are obtained in the range 1 X 10-3–1 x 10-6 M copper(II). The method is applicable to analysis of high-purity cadmium for copper.  相似文献   

14.
Fogg AG  Ismail R  Ahmad R  Banica FG 《Talanta》1997,44(3):491-495
Previously, thiols have been determined indirectly by cathodic stripping voltammetry (CSV) after accumulation as their mercury and copper(I) salts. Following a previous report of the first use of the catalytic nickel peak (for the determination of cysteine), this paper reports the first use of the catalytic cobalt peak in CSV (for the determination of 2-mercaptobenzothiazole (MBT)): only a very ill-defined catalytic cobalt peak had been observed previously with cysteine, and was unreported. MBT is accumulated at pH 4 (Britton-Robinson buffer) as its cobalt(II) complex at -0.1 V, and is then determined indirectly by observing the reduction of the cobalt(II) in the complex at -0.95 V, i.e., with a much lowered overpotential: hydrated cobalt(II) is reduced at -1.2 V. The peak is catalytic because the thiol released on reduction of the complex complexes further cobalt ions and causes their reduction. The detection limit for the determination of MBT was calculated to be 2.5 x 10(-9) M (3sigma) using an accumulation time of 1 min. The sensitivity is about three times that obtained with the corresponding catalytic nickel peak.  相似文献   

15.
Stripping voltammetry has been investigated for the determination of traces of ribonuclease, somatostatin, oxytocin, felypressin, insulin and oxidized glutathione at concentrations down to 1.5 × 10?9 M. Repeated cyclic potential scans with an initial cathodic scan were used after accumulation at +0.1 to –0.3 V vs. Ag/AgCl at a hanging mercury drop electrode. In presence of excess of copper(II) ion, the first two compounds yield a well-defined peak couple at ?0.5 to ?0.6 V, with cathodic and anodic peaks of equal height, the accumulated product being adsorbed in both its oxidized and reduced state. Oxytocin and felypressin first yield two unresolved cathodic peaks, one of which disappears in the second scan cycle. Oxidized glutathione yields a large cathodic peak but a small anodic peak because of desorption in the reduced state. Excess of copper(II) is reduced during the accumulation, so that the electrode is actually copper amalgam. The peaks obtained with copper(II) present are considered to be due to redox reactions of copper complexes formed with the cysteine parts of the molecules. These peaks are suitable for quantitative purposes; calibration equations are given. Without copper(II), the substances show stripping responses of different complexity and magnitude. Insulin gives usable stripping peaks only without copper ions.  相似文献   

16.
The well‐known method for the determination of mercury(II), which is based on the anodic stripping voltammetry of mercury(II), has been adapted for applications at the thin film poly(3‐hexylthiophene) polymer electrode. Halide ions have been found to increase the sensitivity of the mercury response and shift it more positive potentials. This behavior is explained by formation of mercuric halide which can be easily deposited and stripped from the polymer electrode surface. The procedure was optimized for mercury determination. For 120 s accumulation time, detection limit of 5 ng mL?1 mercury(II) has been observed. The relative standard deviation is 1.3% at 40 ng mL?1 mercury(II). The performance of the polymer film studied in this work was evaluated in the presence of surfactants and some potential interfering metal ions such as cadmium, lead, copper and nickel.  相似文献   

17.
A stable film of poly(3‐octylthiophene)–dihydroxyanthraquinone sulfonate has been synthesized electrochemically in non‐aqueous solution. The incorporation of dihydroxyanthraquinone sulfonate as an anionic complexing ligand into poly(3‐octylthiophene) film during electropolymerization was achieved and copper ions were accumulated by reduction on the electrode surface. The presence of dihydroxyanthraquinone sulfonate during the electrochemical polymerization of 3‐octylthiophene is shown to impact the sensitivity and the stability of the organic conducting film electrode response. The electroanalysis of copper(II) ions using conducting polymer electrode was achieved by differential pulse anodic stripping voltammetry with remarkable selectivity. The analytical performance was evaluated and linear calibration graphs were obtained in the concentration range of 50–400 ng mL?1 copper(II) ion for 240 seconds accumulation time and the limit of detection was found to be 7.8 ng mL?1. To check the selectivity of the proposed stripping voltammetric method for copper(II) ion, various metal ions as potential interferents were tested. The developed method was applied to copper(II) determination in certified reference material, NWRI‐TMDA‐61, trace elements in fortified water.  相似文献   

18.
A chemically modified electrode (CME) containing salicylaldehyde thiosemicarbazone (TSCsal) was evaluated for the ability to preconcentrate copper(II) prior to quantification by voltammetry. The CME has been used for the very sensitive and selective analysis of trace amounts of copper(II). A detection limit of 0.1 ppb was obtained by applying anodic stripping voltammetry with a flow system. The parameters that affect the sensitivity and possible interference by other ions or chelating agents have been examined in detail. The CME exhibits high stability and the response could be reproduced for four preconcentration-determination-renewal cycles [10ppbCu(II)] with a 2.87% relative standard deviation. The proposed method has been applied to the determination of copper(II) in tap water, drinking water, and NASS-3 standard reference sea water samples. The results gave satisfactory recoveries.  相似文献   

19.
The copper-mercury film electrode has been suggested for the determination of Se(IV) in a wide range of concentration from 1x10(-9) to 1x10(-6) mol L(-1)by square-wave cathodic stripping voltammetry. Insufficient reproducibility and sensitivity of the mercury film electrode have been overcome by using copper(II) ions during the plating procedure. Copper(II) has been found to be reduced and form a reproducible copper-mercury film on a glassy carbon electrode surface. The plating potential and time, the concentration of copper(II) and the concentration of the supporting electrolyte have been optimised. Microscopy has been used for a study of the morphology of the copper-mercury film. It has been found that it is the same as for the mercury one. The preconcentration step consists in electrodeposition of copper selenide on the copper-mercury film. The relative standard deviation is 4.3% for 1x10(-6) mol L(-1) of Se(IV). The limit of detection is 8x10(-10) mol L(-1) for 5 min of accumulation.  相似文献   

20.
《Electroanalysis》2018,30(3):415-425
Chemical recognition elements for copper(II) ion have been generated in electrodes modified with poly(aniline‐co‐metanilic acid), P(An‐co‐MA), membrane and the resulting electrodes were used as selective sensors for voltammetric and potentiometric determination of this ion in an extended pH range. The P(An‐co‐MA) membrane was electrodeposited from aqueous mixed monomer solutions of An and MA, without the presence of a supporting electrolyte. For generating the recognition elements, P(An‐co‐MA) modified electrodes were subjected to several consecutive reduction/oxidation potential steps in copper(II) ion solution. It seems that during these potential steps, the receptor sites of the membrane are adjusted to the size, complexing property and hard/soft nature of copper(II) ion. This electrochemically mediated templating process, provided a selective sensor for determination of copper(II) ion. The results of preconcentration/differential pulse anodic stripping voltammetry, indicated analytical relation between the peak current and concentration of copper(II) from 1.0×10−9 to 1.0×10−4 M. The interference effect of various metal ions was explored and it was found that only mercury and silver ions show a considerable interference. The sensor exhibited selective potentiometric response for copper(II) over a wide concentration range (1.0×10−8 to 1.0×10−3 M) with a Nernstian slope of 27.9±0.3 mV per decade of copper(II) ion activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号