首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oxaliplatin is an important anti-cancer drug that has been approved for the treatment of colorectal cancer. It is known that oxaliplatin, like other Pt-based drugs, interacts with DNA to form cytotoxic Pt-DNA adducts that disrupt important biological processes such as DNA replication and protein synthesis. Linear ion trap electrospray ionisation mass spectrometry (ESI-MS) was employed to study the interaction of oxaliplatin with DNA nucleobases. It was shown that oxaliplatin formed adducts with all four DNA nucleobases when present individually and in combination in solution. Multiple-stage tandem mass spectrometry (MSn) enabled the fragmentation pathways of each adduct to be established. In addition, proposed structures for each product ion were obtained from the MS data. When all four bases were present together with the drug at near-equal molar concentrations, adducts containing predominantly adenine and guanine were formed, confirming that the drug preferentially binds to these nucleobases. A large molar excess of drug was required to ensure the formation of cytosine and thymine adducts in the presence of adenine and guanine. Even with a large excess of oxaliplatin, only mono-adducts of these nucleobases were observed when all four nucleobases were present. Figure Schematic of a linear ion trap mass spectrometer being used to isolate the diadduct of guanine with oxaliplatin showing the characteristic isotope pattern due to 194Pt, 195Pt and 196Pt.  相似文献   

2.
Abstract

Strain-energy minimization calculations of adducts of platinum(II) complexes containing 1,2-diaminocyclohexane (DACH) with the sequence d(pCpGpAp)·d(pGpCpTp) of a synthetic B-DNA were carried out by using a modification of the MM2 program. (C, G, A, T, and p denote cytidine, guanosine, adenosine, thymidine, and phosphate, respectively). In result, the more antitumor-active trans-DACH complex adducts are about 37 kJ/mol more stable than the cis complex in total energy.

Platinum-complex adducts of 2-(aminomethyl)cyclohexylamine abbreviated as AMCHA were also estimated. In calculations, the trans-AMCHA-complex adducts are about 6 to 14 kJ/mol more stable than the cis ones. The differences are less than between the DACH complexes. In addition, this relaxation of strain occurred in the six-membered ring.  相似文献   

3.
Capillary electrophoresis-electrospray ionization-mass spectrometry (CE-ESI-MS) has been used for investigating the influence of the sulfur containing amino acid L-methionine (L-Met) on the binding behavior of oxaliplatin (trans-R,R-diaminocyclohexane-(oxalato)platinum(II)) to 5'-GMP. L-Methionine competes with 5'-GMP for the platinum binding site and forms as well as 5'-GMP adducts with oxaliplatin. The formation of the prognosed complexes [Pt(DACH)(L-Met-S,N)]+ and [Pt(DACH)(5'-GMP)2]2- (DACH = 1,2-diaminocyclohexane) could be proved directly by using CE-ESI-MS. Furthermore, we could now bring forward proofs, that the coordination of 5'-GMP with oxaliplatin is inhibited by L-methionine and could show, that the 5'-GMP ligands of the [Pt(DACH) (5'-GMP)2]2- complex can be replaced slowly by L-methionine whereas methionine can not be replaced by GMP.  相似文献   

4.
Abstract  The electrospray mass spectrometric (ESI–MS) behavior of the complexes trans-dichloro(ethylenediamine-N,N′-di-3-propionato)platinum(IV), trans-dibromo(ethylenediamine-N,N′-di-3-propionato)platinum(IV), dichloro(ethylenediamine-N,N′-di-3-propionic acid)platinum(II), tetrachloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), chlorotribromo(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(IV), and dichloro(O,O′-di-n-butyl-ethylenediamine-N,N′-di-3-propanoate)platinum(II), with the formulae trans-[PtCl2(eddp)] (1), trans-[PtBr2(eddp)] (2), [PtCl2(H2eddp)] (3), [PtCl4(Bu2eddp)] (4), [PtBr3Cl(Bu2eddp)] (5), and [PtCl2(Bu2eddp)]·H2O (6), is reported. The deprotonated molecular ions or halide adducts are usually observed. ESI–MS data demonstrate the usefulness of the method for efficient characterization of metal complexes in solution. Graphical Abstract     相似文献   

5.
The detection and fragmentation behaviour of adducts of the chemotherapeutic cis-diamminedichloroplatinum(II) (cisplatin) with the dinucleosidemonophosphates d(ApG), d(GpG) and d(TpC) as model compounds for DNA adducts in an ion trap with electrospray ionization were studied. Mainly the monofunctional adduct, the bifunctional adduct and the bifunctional adduct with platinum bridging two dinucleosidemonophosphates were detected. In addition, several more complex adducts were seen resulting from reactions among these species. Adduct formation was low in the case of d(TpC). Fragmentation could be controlled strongly by varying the temperature of the transfer capillary; furthermore, tandem mass spectrometric (MS/MS) experiments on both the monofunctional and the bifunctional adducts were performed. For the adducts of d(ApG) and d(GpG) losses of NH(3) and HCl were the most dominant reactions, followed by the losses of one, then another two units of 98 amu from the sugar-phosphate backbone, whereas d(TpC)-Pt predominantly forms the dinucleosidemonophosphate. In the gas phase, the conversion of the monofunctional into the bifunctional adducts through binding to another site in the dinucleotide accompanied by loss of NH(3) or HCl could also be observed. The removal of a ligand from the coordination sphere of the square-planar platinum complexes appeared to be the crucial step for the induction of further fragmentation of the dinucleotide ligand. MS(n) experiments of the bifunctional adducts of d(ApG) and d(GpG) revealed different fragmentation pathways involving the loss of phosphoric acid, metaphosphoric acid, deoxyribose units (intact or dehydrated) and the nucleobases in different orders, leaving characteristic binding site-determining fragments. Fragmentation of these ions was also performed, mainly resulting in fragmentation of the bases. The study confirmed the remarkable stability of the platinum-guanine bond compared with other nucleobases.  相似文献   

6.
Abstract  2-Methylbenzimidazole 1 reacted with 3-dicyanomethylidine-1-ethyl-2-oxoindoline 2 in ethyl acetate to afford 1-amino-2-cyano-3,4-dihydro-1′-ethylspiro{benzimidazo[1,2-a]pyridine-3,3′-indolin}-2′-one 6, which was used as a key intermediate in the synthesis of fused spiropolyheterocyclic derivatives of benzimidazopyridopyrimidine and/or benzimidazonaphthyridine nucleus incorporating an indoline moiety. Graphical abstract     相似文献   

7.
Oxaliplatin, [(1R,2R)‐cyclohexane‐1,2‐diamine](ethanedioato‐O,O')platinum(II) shows a great efficiency against colorectal cancer. Although the mode of action of oxaliplatin is not yet understood, it is commonly accepted that binding of oxaliplatin to DNA prevents DNA synthesis and alters protein to DNA binding. In order to elucidate the modified DNA–protein interaction and thus to understand the mechanisms leading to cellular misinterpretation of DNA information and apoptosis, we have identified the preferential binding sites and the dynamics of the oxaliplatin‐DNA intrastrand and interstrand adducts at the oligomer level using high‐performance liquid chromatography/electrospray ionization‐tandem mass spectrometry (HPLC/ESI‐MS/MS) and HPLC/inductively coupled plasma‐MS for quantitative studies. We used a combination of benzonase, alkaline phosphatase and Nuclease S1 for digestion. This digestion procedure allows the study of platinated oligomeric nucleotides and more complex interstrand adducts. The digestion products were mostly chromatographically separated and characterized using HPLC/ESI‐ion trap MS/MS experiments. We could show that the adducts to guanine and adenine are quite dynamic; that is, the ratios are changing for several days. In addition, the resulting adducts provide evidence for the action of the digesting enzymes and indicate that the adduct spectrum at the oligomeric level is different to that at the commonly studies dinucleotide level. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
A number of pivalamidate bridged dinuclear [PtII2(RNH2)4(NHCOtBu)2]2+, [PtIII2LL (RNH2)4(NHCOtBu)2]n+ (2RNH2 = 2NH3, 1,2-ethylenediamine, 1,2-diaminocyclohexane; L, L' = NO3-, H2O, or ketonate), trinuclear [{PtII(dap)(NHCOtBu)2}2PdIII]3+ (dap = 1,2-diaminopropane), tetranuclear [{PtII2(NH3)2(DACH)(NHCOtBu)2}2]4+ (DACH = 1,2-diaminocyclohexane), pentanuclear [{Pt2(C5H7O)(NH3)2Cl2(NHCOtBu)2}2PtCl4], and hexanuclear [Pt2(NH3)2(en)(NHCOtBu)2Pt(NO2)4]2 platinum complexes containing Pt(II)-Pt(II), Pt(II)-Pt(III), Pt(II)-Pd(III), and Pt(III)-Pt(III) interactions have been prepared and structurally characterized. The Pt-Pt interactions are characteristic of covalent, dative, or orbital symmetric Pt-Pt bonds. The dimeric Pt(III) complexes are able to activate C-H bonds of ketones to afford ketonate platinum(III) complexes. The Pt-Pt bonds are either doubly amidate-bridged or ligand unsupported. Their distances are 2.99-3.22 A for Pt(II)-Pt(II), 2.59-2.72 A for Pt(III)-Pt(III), 2.98 A for Pt(II)-Pt(III), and 2.66 A for Pt(II)-Pd(III) bonds depending on the oxidation states of the two metals and the ancillary ligands.  相似文献   

9.
Abstract  An efficient and direct procedure for the synthesis of novel spiro[isoindoline-1,2′-quinazoline]-3,4′(3′H)-dione derivatives is described. The process employs a condensation reaction of 2-aminobenzamides and isatins in the presence of a catalytic amount of KAl(SO4)2.12H2O (alum) in ethanol under reflux. Graphical Abstract     相似文献   

10.
The antitumoral effect of cisplatin [cis-diamminodichloroplatinum(II)] in mammals is related to its binding to DNA components. However, there is a lack of specific chemical methods to selectively detect those adducts formed in vivo at low concentrations. In this work, a new sensitive and selective method of determining cisplatin–DNA adducts based on the use of element-selective mass spectrometry is proposed, and the method is then applied to detect cisplatin adducts induced in vivo in somatic cells of Drosophila melanogaster. The bioanalytical strategy proposed here allows the determination of the most important DNA adduct formed between adjacent guanine units of the same DNA strand with cisplatin, and it is based on the coupling of capillary liquid chromatography (cap-LC) to inductively coupled plasma mass spectrometry (ICP-MS). This set-up allows the simultaneous monitoring of the Pt (from the drug) and P (from the DNA components) present in these adducts, once they have been cleaved by enzymatic hydrolysis of the DNA samples. Using this instrumental set-up, the adducts of cisplatin formed in vivo when D. melanogaster flies are exposed to different cisplatin concentrations can be detected and their concentration determined. The results obtained show a direct correlation between the concentration of cisplatin adducts, the induced genotoxic damage (measured as DNA strand breaks using the Comet assay) and the cisplatin concentration. Figure The work illustrates the complementary use of bioanalytical and biological information to study cisplatin interactions with DNA is vivo at biologically relevant concentrations of the drug  相似文献   

11.
Eight platinum(II) complexes with the new chiral ligands, (1R,2R)-N 1-(pyridine-2-ylmethyl) cyclohexane-1,2-diamine (R) or (1S,2S)-N 1-(pyridine-2-ylmethyl) cyclohexane-1,2-diamine (S) as the carrier groups were designed, synthesized, and spectrally characterized. All platinum(II) complexes showed much better aqueous solubility than cisplatin and oxaliplatin. In vitro cytotoxicity of the compounds against human HepG-2, MCF-7, A549, and HCT-116 cell lines was evaluated. Results indicate that all compounds with R as the carrier group showed cytotoxicity against HCT-116, A549, and MCF-7 cell lines; however, all compounds with S as carrier group exhibited disappointing cytotoxicity against tested cell lines. Compound R2, bearing ClCH2COO- as leaving group, exhibited better cytotoxicity than that of carboplatin against A549 and MCF-7 cell lines and also showed close activity to oxaliplatin against HCT-116 cell line.  相似文献   

12.
Cisplatin, carboplatin, and oxaliplatin represent three generations of platinum based drugs applied successfully for cancer treatment. As a consequence of the employment of platinum based cytostatics in the cancer treatment, it became necessary to study the mechanism of their action. Current accepted opinion is the formation of Pt‐DNA adducts, but the mechanism of their formation is still unclear. Nanomaterials, as a progressively developing branch, can offer a tool for studying the interactions of these drugs with DNA. In this study, fluorescent CdTe quantum dots (QDs, λem = 525 nm) were employed to investigate the interactions of platinum cytostatics (cisplatin, carboplatin, and oxaliplatin) with DNA fragment (500 bp, c = 25 μg/mL). Primarily, the fluorescent behavior of QDs in the presence of platinum cytostatics was monitored and major differences in the interaction of QDs with tested drugs were observed. It was found that the presence of carboplatin (c = 0.25 mg/mL) had no significant influence on QDs fluorescence; however cisplatin and oxaliplatin quenched the fluorescence significantly (average decrease of 20%) at the same concentration. Subsequently, the amount of platinum incorporated in DNA was determined by QDs fluorescence quenching. Best results were reached using oxaliplatin (9.4% quenching). Linear trend (R2 = 0.9811) was observed for DNA platinated by three different concentrations of oxaliplatin (0.250, 0.125, and 0.063 mg/mL). Correlation with differential pulse voltammetric measurements provided linear trend (R2 = 0.9511). As a conclusion, especially in the case of oxaliplatin‐DNA adducts, the quenching was the most significant compared to cisplatin and nonquenching carboplatin.  相似文献   

13.
Melphalan is a bifunctional alkylating agent that covalently binds to the nucleophilic sites present in DNA. In this study we investigated oligonucleotides prepared enzymatically from DNA modified with melphalan. Calf thymus DNA was incubated in-vitro with melphalan and the resulting modifications were enzymatically cleaved by means of benzonase and nuclease S1. Efficient sample preconcentration was achieved by solid-phase extraction, in which phenyl phase cartridges resulted in better recovery of the modified species than C18. The applied enzymatic digestion time resulted in production of trinucleotide adducts which were efficiently separated and detected by use of reversed-phase HPLC coupled to an ion-trap mass spectrometer with electrospray ionization. It was assumed that melphalan could act as both a monofunctional and bifunctional alkylating agent. Mono-alkylated adducts were much more abundant, however, and the alkylation site was located on the nucleobases. On the other hand, we unequivocally identified cross-link formation in DNA, even though at low abundance and only a few adduct types were detected. Figure Different Alkylation reactions of Melphalan with DNA  相似文献   

14.
《合成通讯》2013,43(24):4209-4220
Abstract

A versatile method for the preparation of dicarba analogues of cystine as substituted benzene-, dihydrobenzene-, and tetrahydrobenzene-1,2-bis(alanine) derivatives is described. The partially saturated products resulted from Diels-Alder adduct formation with stereoselectively prepared (2R,7R)-2,7-diacetamido-4,5-bis (methylene)octane-1,8-dioic acid dimethyl ester. Aromatization of the dihydro adducts by manganese dioxide provided the parent benzene-1,2-bis(alanine) derivatives.  相似文献   

15.
Oxaliplatin and cisplatin belong to the class of platinum‐based anticancer agents. Formation of DNA adducts by these complexes and the consequences for its structure and function, is the mechanistic paradigm by which these drugs exert their antitumor activity. We show that employing short oligonucleotide duplexes containing single, site‐specific 1,3‐intrastrand cross‐links of oxaliplatin, its enantiomeric analogue, or cisplatin and by using gel electrophoresis that under physiological conditions the coordination bonds between platinum and the N7 position of guanine residues involved in the cross‐links of the PtII complexes can be cleaved. This cleavage may lead to linkage isomerization reactions between these metallodrugs and double‐helical DNA. For instance, approximately 25 % 1,3‐intrastrand cross‐links of the platinum complexes isomerized after 192 h (at 310 K in 200 mM NaClO4). Differential scanning calorimetry of duplexes containing single, site‐specific cross‐links of oxaliplatin, its enantiomeric analogue, and cisplatin reveals that one of the driving forces that leads to the lability of DNA cross‐links of these metallodrugs is a difference between the thermodynamic destabilization induced by the cross‐link and by the adduct into which it could isomerize. The rearrangements may proceed in the way that cross‐links originally formed in one strand of the DNA can spontaneously translocate from one DNA strand to its complementary counterpart, which may evoke walking of the platinum complex on DNA molecule. In addition, the differences in the kinetics of the rearrangement reactions and the thermodynamic destabilization of DNA observed for adducts of oxaliplatin and its enantiomeric analogue confirm that the chirality at the carrier 1,2‐diaminocyclohexane ligand can considerably affect structural and other physical properties of DNA adducts and consequently their biological effects. In aggregate, interesting generalization of the results described in this work might be that the migration of oxaliplatin, its enantiomeric analogue, or cisplatin from one strand to another in double‐helical DNA controlled by energetic signatures of these agents might contribute to a better understanding of their cytotoxic and mutagenic potential.  相似文献   

16.
The mechanism of action of platinum-based anticancer drugs such as cis-diamminedichloroplatinum(II), or cisplatin, involves three early steps: cell entry, drug activation, and target binding. A major target in the cell, responsible for the anticancer activity, is nuclear DNA, which is packaged in nucleosomes that comprise chromatin. It is important to understand the nature of platinum-DNA interactions at the level of the nucleosome. The cis-{Pt(NH3)2}2+ 1,2-d(GpG) intrastrand cross-link is the DNA lesion most commonly encountered following cisplatin treatment. We therefore assembled two site-specifically platinated nucleosomes using synthetic DNA containing defined cis-{Pt(NH3)2}2+ 1,2-d(GpG) cross-links and core histones from HeLa-S3 cancer cells. The structures of these complexes were investigated by hydroxyl radical footprinting and exonuclease III mapping. Our experiments demonstrate that the 1,2-d(GpG) cross-link alters the rotational setting of the DNA on the histone octamer core such that the lesion faces inward, with disposition angles of the major groove relative to the core of xi approximately -20 degrees and xi approximately 40 degrees . We observe increased solvent accessibility of the platinated DNA strand, which may be caused by a structural perturbation in proximity of the 1,2-d(GpG) cisplatin lesion. The effect of the 1,2-d(GpG) cisplatin adduct on the translational setting of the nucleosomal DNA depends strongly on the position of the adduct within the sequence. If the cross-link is located at a site that is in phase with the preferred rotational setting of the unplatinated nucleosomal DNA, the effect on the translational position is negligible. Minor exonuclease III digestion products in this substrate indicate that the cisplatin adduct permits only those translational settings that differ from one another by integral numbers of DNA helical turns. If the lesion is located out of phase with the preferred rotational setting, the translational position of the main conformation was shifted by 5 bp. Additionally, a fraction of platinated nucleosomes with widely distributed translational positions was observed, suggesting increased nucleosome sliding relative to platinated nucleosomes containing the 1,3-intrastrand d(GpTpG) cross-link investigated previously (Ober, M.; Lippard, S. J. J. Am. Chem. Soc. 2007, 129, 6278-6286).  相似文献   

17.
Platinum adducts are supposed to be the cytotoxic lesions in DNA after platinum-containing anticancer therapy. Various adducts are formed upon interaction of platinum complexes with nucleotides, but contribution of individual adducts to antitumor activity and toxicity of platinum complexes still remains to be examined. A capillary zone electrophoresis (CZE) method is described that is suitable to separate individual platinum adducts. We investigated the formation of adducts following the reaction of cis-diamminedichloroplatinum (II) (cisplatin) with various DNA nucleotides. Baseline separation of unmodified and modified nucleotides (adducts) was achieved using uncoated fused-silica capillaries and basic separation buffers. In order to elucidate the observed peak pattern, a coupled CZE-electrospray ionization-mass spectrometry (ESI)-MS approach was applied. After incubation of mononucleotides with cisplatin, monochloro, monoaqua and bifunctional adduct species were detected. Consequently, the migration order of nucleotides and individual platinum adducts could be determined. Moreover, the time-dependent conversion from monochloro to monoaqua and subsequently to bifunctional adducts was monitored. In conclusion, individual platinum adducts were separated by CZE and identified by CZE-ESI-MS. Formation and conversion of distinct species were confirmed. Potential applications comprise studies of novel platinum complexes, investigations of platinum-adduct formation with DNA, and determination of platinum-DNA adducts in cells.  相似文献   

18.
Abstract  Attempts to remove the halide atoms from [Au2(hpp)2Cl2], 1, Hhpp = 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine, with Ag(I) benzoate lead to the formation of the Au(I)–Ag(I) product, [(PhCOO)2Au4(hpp)4Ag2(PhCOO)4], 2. This material is stable to air and light at room temperature and shows a UV–vis spectrum in THF with absorbances at 575, 440, 345, and 273 nm. The mixed metal product crystallizes as green crystals in the monoclinic space group P21/n. The Au–Au distances of 2.4473(19) ? are the shortest gold–gold distances reported to date. The gold···silver distance is 3.344(3) ? and the silver···silver distance is 2.771(6) ?. This latter distance is short compared with the Ag···Ag distance of 2.902(3) ? in the eight-membered silver benzoate dimer starting material. The Au(II) hpp and Ag(I) benzoate components are linked by carboxylate groups and two gold-silver interactions. This result stands in structural contrast to terminal carboxylate products observed with Au(II) ylides and amidinates wherein the carboxylate is not bridging to another metal atom. Index Abstract  Three equivalents of silver benzoate react with [Au2(hpp)2Cl2], 1, Hhpp 1,3,4,6,7,8-hexahydro-2H-pyrimido[1,2-a]pyrimidine, to form the gold(II)-silver(I) product, 2, [(PhCOO)2Au4(hpp)4Ag2(PhCOO)4]. The gold–gold distance of 2.4473(19) ? is the shortest gold–gold distance reported to date. The gold–silver distance is 3.344(3) ? and the silver–silver distance is 2.771(6) ?. Dedicated to the memory of F. Albert Cotton (1930–2007).  相似文献   

19.
A new synthetic polymeric chiral stationary phase for liquid chromatography was prepared via free-radical-initiated polymerization of trans-9,10-dihydro-9,10-ethanoanthracene-(11S,12S)-11,12-dicarboxylic acid bis-4-vinylphenylamide. The new polymeric chiral stationary phase (CSP) showed enantioselectivity for many chiral compounds in multiple mobile phases. High stability and sample capacities were observed on this polymeric chiral stationary phase. Mobile phase components and additives affected chiral separation greatly. This new synthetic chiral stationary phase is complementary to two other related commercially available CSPs: the P-CAP and P-CAP-DP columns. Interactions between the chiral stationary phase and analytes that lead to retention and chiral recognition include hydrogen bonding, dipolar, and π–π interactions. Repulsive (steric) interactions also contribute to chiral recognition. Figure LC chromatograms showing the analytical (blue) and preparative (red) separations of N-(3,5-dinitrobenzoylleucine) enantiomers on a new synthetic polymeric chiral stationary phase  相似文献   

20.
(1R,2R)-N1-2-amyl-1,2-diaminocyclohexane, which has an amyl substituent as compared with 1,2-diaminocyclohexane, was used as the carrier group to construct three platinum(II) complexes. MTT assay revealed that the complexes showed decent cytotoxicity against all of the four tested tumor cell lines with the IC50 values ranging from 1.08 to 253.36 μM. Particularly, the IC50 values of 2 against A549 and HCT-116 reached 3.32 and 1.08 μM, respectively, which were much lower than those of cisplatin and oxaliplatin. Flow cytometry demonstrated that 2 inhibited HepG2 cells proliferation and caused cytotoxicity by inducing apoptosis and arresting cells in the G2 phase. Furthermore, agarose gel electrophoresis showed that 2 had the ability to interact with DNA in a manner different from cisplatin and oxaliplatin, indicating the carrier ligand with an alkyl moiety had an influence on the action mode of the complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号