首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Reaction of C70 with ten equivalents of silver(I) trifluoroacetate at 320-340 degrees C followed by fractional sublimation at 420-540 degrees C and HPLC processing led to the isolation of a single abundant isomer of C70(CF3)n for n = 2, 4, 6, and 10, and two abundant isomers of C70(CF3)8. These six compounds were characterized by using matrix-assisted laser desorption ionization (MALDI) mass spectrometry, 2D-COSY and/or 1D 19F NMR spectroscopy, and quantum-chemical calculations at the density functional theory (DFT) level. Some were also characterized by Raman spectroscopy. The addition patterns for the isolated compounds were unambiguously found to be C1-7,24-C70(CF3)2, C1-7,24,44,47-C70(CF3)4, C2-1,4,11,19,31,41-C70(CF3)6, Cs-1,4,11,19,31,41,51,64-C70(CF3)8, C2-1,4,11,19,31,41,51,60-C70(CF3)8, and C1-1,4,10,19,25,41,49,60,66,69-C70(CF3)10 (IUPAC numbering). Except for the last compound, which is identical to the recently reported, crystallographically characterized C70(CF3)10 derivative prepared by a different synthetic route, these compounds have not previously been shown to have the indicated addition patterns. The largest relative yield under an optimized set of reaction conditions was for the Cs isomer of C70(CF3)8 (ca. 30 mol % of the sublimed mixture of products based on HPLC integration). The results demonstrate that thermally stable C70(CF3)n isomers tend to have their CF3 groups arranged on isolated para-C6(CF3)2 hexagons and/or on a ribbon of edge-sharing meta- and/or para-C6(CF3)2 hexagons. For Cs- and C2-C70(CF3)8 and for C2-C70(CF3)6, the ribbons straddle the C70 equatorial belt; for C1-C70(CF3)4, the para-meta-para ribbon includes three polar hexagons; for C1-7,24-C70(CF3)2, the para-C6(CF3)2 hexagon includes one of the carbon atoms on a C70 polar pentagon. The 10.3-16.2 Hz 7JF,F NMR coupling constants for the end-of-ribbon CF3 groups, which are always para to their nearest-neighbor CF3 group, are consistent with through-space Fermi-contact interactions between the fluorine atoms of proximate, rapidly rotating CF3 groups.  相似文献   

2.
An extended study of the spectroscopic and redox properties of the C(82) fullerene is presented. Among the nine isolated-pentagon-rule (IPR) isomers of the C(82) fullerene the C(82)(3) isomer with C(2) symmetry is the only stable, empty fullerene structure formed in the arc burning process that can be isolated in an isomerically pure form. Here, its formation and isolation are described and its structure is confirmed by experimental spectroscopic studies as well as time-dependent DFT calculations. The electrochemistry of the C(82)(3) isomer is studied in detail by cyclic voltammetry and spectroelectrochemistry. The anionic species of C(82) with the charge ranging from C(82) (-) to C(82) (4-) were successively generated in o-dichlorobenzene solution at room temperature and characterized by in situ ESR and visible/near-infrared (Vis/NIR) spectroscopy. The data give new insights into the charged states of the C(82)(3) fullerene.  相似文献   

3.
A spectroelectrochemical study of the two isostructural asymmetric perfluoroalkyl derivatives C1‐7,24‐C70(CF3)2 and C1‐7,24‐C70(C2F5)2 is presented. Reversible formation of their stable monoanion radicals is monitored by cyclic voltammetry and by in situ ESR‐Vis‐NIR spectroelectrochemistry. The ESR spectrum of the C70(CF3)2?. radical is a 1:3:3:1 quartet with a 19F hyperfine coupling constant (a(F)) of 0.323(4) G, demonstrating that the unpaired spin is coupled to only one of the two CF3 groups. The 13C satellites are assigned to specific carbon atoms. The ESR spectrum of the C70(C2F5)2?. radical is an apparent octet with an apparent a(F) value of 0.83(2) G. DFT calculations suggest that this pattern is due to the superposition of spectra for four nearly isoenergetic C70(C2F5)2?. conformers. Time‐dependent DFT calculations suggest that the NIR band at 1090 nm exhibited by both C70(Rf)2?. radical anions is assigned to the SOMO→LUMO+3 transition. The analogous NIR band exhibited by the closed‐shell C70(CF3)22? dianion was blue‐shifted to 1000 nm.  相似文献   

4.
5.
Benzene- or 2,3-naphthalene-ring-expanded tetraazachlorins (TACs), tetraazabacteriochlorins (TABCs), and tetraazaisobacteriochlorins (TAiBCs) have been synthesized by using tetramethylsuccinonitrile as a source of hydrogenated sites. The derived compounds were characterized by using NMR spectroscopy, X-ray crystallography, electronic and magnetic circular dichroism (MCD) spectroscopy, and electrochemical and spectroelectrochemical methods. X-ray analysis revealed that the benzene-fused TAiBC deviates slightly from planarity at the hydrogenated sites as a result of the presence of sp(3) carbons, which prefer a nonplanar tetrahedral conformation. The spectral data were analyzed by using a band deconvolution technique. In the electronic absorption spectra of TAC and TABC species, the Q band splits into two intense components and smaller splittings were observed for the 2,3-naphthalene-fused derivatives relative to the benzo-fused species. In contrast, in the case of TAiBCs, the Q band splitting was apparently not observed in absorption spectra, as expected from the C(2v) molecular symmetry. However, MCD signals of the Q band in TAiBCs showed Faraday B terms, implying that the accidental degeneracy of the LUMO and LUMO+1 was broken even for adjacently ring-fused species. Relative molecular orbital energies were estimated by using cyclic and differential pulse voltammetry. The first reduction potentials were close for TACs and TABCs, although those of TAiBCs shifted to more negative potentials. In contrast, although TABCs and TAiBCs exhibited similar first oxidation potentials, those of TACs appeared at more positive potentials. These properties were reproduced and rationalized by molecular orbital and configuration interaction calculations within the framework of the ZINDO/S Hamiltonian. DFT-level frequency calculations have succeeded in reproducing the IR spectra for low-symmetry tetraazaporphyrin (TAP) derivatives for the first time. The relationship between structures and spectral features is discussed.  相似文献   

6.
7.
CF3‐derivatized fullerenes prove once again to be promising scaffolds for regioselective fullerene functionalization: now with the smallest possible addends—hydrogen atoms. Hydrogenation of Cs‐C70(CF3)8 and C1‐C70(CF3)10 by means of reduction with Zn/Cu couple in the presence of water proceeds regioselectively, yielding only one major isomer of C70(CF3)8H2 and only two for C70(CF3)10H2, whose addition patterns are combined in the only abundant isomer of C70(CF3)10H4. The observed selectivity is governed by the electronic structure of trifluoromethylated substrates. Interestingly, we discovered that Clar's theory can be utilized to predict the regiochemistry of functionalization, and we look forward to testing it on forthcoming cases of derivatization of pre‐functionalized fullerene building blocks.  相似文献   

8.
1,2-Naphthalene-ring-expanded tetraazachlorins (TACs), tetraazabacteriochlorins (TABCs), and tetraazaisobacteriochlorins (TAiBCs) have been synthesized. Procedures for the synthesis of the starting materials, that is, derivatives of 1,2-naphthalenedicarboxylic acid, have been reinvestigated and improved. Nine possible derivatives, including four, two, and three structural isomers of TACs, TABCs, and TAiBCs, respectively, were separated by using thin-layer chromatography (TLC) or high-performance liquid chromatography (HPLC), and the structure of each isomer was determined by (1)H NMR spectroscopy combined with the NOE technique. The formation ratio of each isomer was rationalized in terms of the intramolecular steric repulsion effect, which was predicted by geometry optimizations at the DFT level. The derived compounds were characterized by using IR, electronic, and magnetic circular dichroism (MCD) spectroscopy, and by electrochemical methods. Frequency calculations at the DFT level correctly reproduced the experimental IR spectra and, in particular, distinguished between the three isomers of the TAiBCs. In the electronic absorption and MCD spectra of the TAC and TABC species, the Q-band splits into two intense components similarly to the 2,3-naphthalene-fused derivatives described in our preceding paper, although no significant spectral differences were observed from species to species. On the other hand, the spectra of the TAiBCs showed moderate differences depending on the structure of the isomer. The spectroscopic properties as well as the electrochemical behavior of these chlorins resemble those of the corresponding benzene-fused derivatives rather than the 2,3-naphthalene-fused derivatives. Molecular-orbital and configuration-interaction calculations within the framework of the ZINDO/S method were helpful in the discussions of the above observations.  相似文献   

9.
The synthesis, structure and electronic properties of novel Group 6 Fischer alkoxy–bis(carbene) complexes are reported. The UV/Vis spectra of these species display two main absorptions at approximately 350 and 550 nm attributable to a ligand‐field (LF) and metal‐to‐ligand charge‐transfer (MLCT) transitions, respectively. The planarity of the system and the cooperative effect of both pentacarbonyl metal moieties greatly enhance the conjugation between the group at the end of the spacer and the metal carbene fragment provoking dramatic changes in the LF and MLCT absorptions. This is in contrast to related push–pull Fischer monocarbenes, where the position of the MLCT band remains mostly unaltered regardless the substituent attached to the donor fragment. In addition, the MLCT maxima can be tuned with subtle modifications of the electronic nature of the central aryl fragment in the novel A–π‐D–π‐A (A=acceptor, D=donor) systems. DFT and time‐dependent (TD) DFT quantum chemical calculations at the B3LYP/def2‐SVP level have also been performed to determine the minimum‐energy molecular structure of this family of compounds and to analyse the nature of the vertical one‐electron excitations associated to the observed UV/Vis absorptions as well as to rationalise their electrochemical behaviour. The ability of tuning up the electronic properties of the compounds studied herein may be of future use in material chemistry.  相似文献   

10.
The title compound, Cu4S10(4-methylpyridine)4 · 4-methylpyridine was prepared by three different reactions: the oxidation of copper power by sulfur and the reaction of copper (I) sulfide (or CuBr-SMe2) with cues sulfur, both in the coordinating solvent, 4-methylpyridine. Red crystals of the compound obtained by layering with hexans were subjected to single crystal X-ray diffraction. The structure was refined toR=0.026 and R w =0.036 in a space groupP1bar (No. 2), withZ=2,a=13.983 (2) A,b=15.384( 2) Å,c=9.660 (1) Å, = 93.87 (1)°,=93.38 ==(1)°,V=2037.9 (9) Å3. The commpound has approximate S4 symmetry and consists of two pentasuffide chains linking four Cu(I) ions, each with a coordinating 2-methylpyridine. The infrared spectrum was dominated by absorption due to coodinated 4-methylpyridine with several low-energy peaks attributable to S-S stretches, which were also observed by Raman spectroscopy. A featureless electronic absorption spectrum yielded a single peak in the mar ultraviolet upon computer enhancement (=334 nm, = 10,000), most likely an intraligand transition. Cyclic voltammetry indicates that the polysulfide complex undergoes irreversible oxidation and reduction at +0.04 and –0.34 V vs. SCR respectively, at NS K in 4-methylpyridine when swept at 20 mV/sec. The electrochemical behavior was unvaried even at sweep rates as high as 100 V/sec.  相似文献   

11.
The decakis(trifluoromethyl)fullerene C1‐C70(CF3)10, in which the CF3 groups are arranged on a para7‐meta‐para ribbon of C6(CF3)2 edge‐sharing hexagons, and which has now been prepared in quantities of hundreds of milligrams, was reacted under standard Bingel–Hirsch conditions with a bis‐π‐extended tetrathiafulvalene (exTTF) malonate derivative to afford a single exTTF2–C70(CF3)10 regioisomer in 80 % yield based on consumed starting material. The highly soluble hybrid was thoroughly characterized by using 1D 1H, 13C, and 19F NMR, 2D NMR, and UV/Vis spectroscopy; matrix‐assisted laser desorption ionization (MALDI) mass spectrometry; and electrochemistry. The cyclic voltammogram of the exTTF2–C70(CF3)10 dyad revealed an irreversible second reduction process, which is indicative of a typical retro‐Bingel reaction; whereas the usual phenomenon of exTTF inverted potentials (${E{{1\hfill \atop {\rm ox}\hfill}}}$ >${E{{2\hfill \atop {\rm ox}\hfill}}}$ ), resulting in a single, two‐electron oxidation process, was also observed. Steady‐state and time‐resolved photolytic techniques demonstrated that the C1‐C70(CF3)10 singlet excited state is subject to a rapid electron‐transfer quenching. The resulting charge‐separated states were identified by transient absorption spectroscopy, and radical pair lifetimes of the order of 300 ps in toluene were determined. The exTTF2–C70(CF3)10 dyad represents the first example of exploitation of the highly soluble trifluoromethylated fullerenes for the construction of systems able to mimic the photosynthetic process, and is therefore of interest in the search for new materials for photovoltaic applications.  相似文献   

12.
Three donor–acceptor dyads 13 comprising of a tetrathiafulvalene (TTF) unit linked with perylene by a simple σ-bond were synthesized and characterized. Spectroscopy and cyclic voltammetry provided an indication that intramolecular charge-transfer interactions in their ground states between TTF and perylene for dyads 13 are negligible. Compared with the compound perylene, dyads 13 exhibited large fluorescence quenching, which might be ascribed to photo-induced electron transfer interaction between TTF and perylene units in the excited state. Correspondence: Yongjia Shen, Laboratory of Advanced Materials, Institute of Fine Chemicals, East China University of Science and Technology, Shanghai 200237, P.R. China.  相似文献   

13.
In the search of functional materials with improved electrochromic properties, thiophenes and asymmetric bipyrroles have been conjugated with azomethine units. 4-Methoxy-2,2'-bipyrroles 3-6 were first synthesized by a general route from 4-hydroxyproline and converted subsequently to dialdehydes 8-15, which underwent condensations with different aminothiophenes to provide azomethine conjugates 14-18 and 20-22. The crystallization and X-ray analysis of 20 showed the heterocycles and azomethine bonds were all co-planar with the heterocycles adopting an anti-parallel arrangement. These configurations result in extended conjugation and enhanced opto-electronic properties of the azomethines. Oxidation potential (E(pa)) was tailored by modification of the substitution pattern of the terminal thiophenes and central pyrroles of the azomethines. The combined low E(pa) and extended azomethine degree of conjugation resulted in stark color transitions occurring between their neutral and oxidized states. Reversible color formation was induced both electrochemically and by doping/de-doping with trifluoroacetic acid/triethylamine.  相似文献   

14.
15.
The reaction of trans-[PtCl(p-tol){P(p-tol)3}2] (PtCl) and H(C[triple chemical bond]C)2H (cat. CuI, HNEt2) gives PtC4H (82 %), which can be cross-coupled with excess HC[triple chemical bond]CSiEt3 (acetone, O2, CuCl/TMEDA; Hay conditions) to yield PtC6Si (77 %). The addition of nBu4N+F- in wet acetone gives PtC6H (84 %), and further addition of ClSiMe3 (F- scavenger) and excess HC[triple chemical bond]CSiEt3 (Hay conditions) yields PtC(8)Si (23 %). Similar cross-coupling reactions of PtCxH (generated in situ for x>6) and excess H(C[triple chemical bond]C)2SiEt3 give a) x=4, PtC8Si (29 %), PtC12Si (30 %), and PtC16Si (1 %); b) x=6, PtC10Si (59 %) and PtC14Si (7 %); c) x=8, PtC12Si (42 %); and d) x=10, PtC14Si (20 %). Hay homocoupling reactions of PtC4H, PtC6H, PtC8H, and PtC10H give PtC8Pt, PtC12Pt, PtC16Pt, and PtC20Pt (88-70 %), but PtC12H decomposes too rapidly. However, when PtC12Si and PtC14Si are subjected to Hay conditions, protodesilylation occurs in the presence of the oxidizing agent and PtC24Pt (36 %) and PtC28Pt (51 %) are isolated. Reactions of PtC6H and PtC10H with PtCl (CuI, HNEt2) give PtC6Pt (56 %) and PtC10Pt (84 %). The effect of the chain lengths in PtCxPt upon thermal stabilities (>200 degrees C for x< or =20), IR nu(C[triple chemical bond]C) patterns (progressively more bands), colors (yellow to orange to deep red), UV/Vis spectra (progressively red-shifted and more intense bands with epsilon>400,000 M(-1) cm(-1)), redox properties (progressively more difficult oxidations), and NMR spectra (many monotonic trends) are analyzed, including implications for the sp carbon allotrope carbyne. Whereas all other dodecaynes and tetradecaynes rapidly decompose at room temperature, PtC24Pt and PtC28Pt remain stable at >140 degrees C. Crystal structures of PtCxSi (x=6, 8, 10) and PtCxPt (x=6, 8, 10, 12) have been determined.  相似文献   

16.
17.
18.
C70(OsO4Py2)3配合物的合成和表征   总被引:4,自引:3,他引:1  
自从1985年Kroto等[1,2]发现富勒烯(球烯)以来,在化学、物理和材料等领域逐渐地形成了富勒烯的研究热潮,现在人们正将较多注意力投向富勒烯的各类衍生物结构与性能之间内在联系规律的研究,以期望在开发应用方面取得更大的进展,为此也更加重视对具有特殊组成与结构的富勒烯衍生物的研究.本文首次合成并表征了C70(OsO4PY2)3配合物,推测了其可能的结构.  相似文献   

19.
Transition metal complexes with ligands based on dipyrido[3,2-a:2′,3′-c]phenazine (dppz) have been synthesized. As metal fragments the [Ru(bpy)2]+, Re(CO)3Cl and the [Cu(PPh3)2]+ moieties have been used. The complexes containing amino- or bis(bromomethyl) substituted dppz ligands can be used for fullerene-based donor-bridge-acceptor dyads. The electronic absorption spectra of these complexes and of the dppz ligands were investigated. The dppz ligands show strong absorptions in the 300 and 390 nm region. An additional absorption band in the visible region (∼440 nm) is observed for the amino-substituted dppz-ligands. Ruthenium complexes exhibited broad absorption bands at 350-500 nm arising from intraligand-based transitions and the MLCT transition. MLCT transitions of the Re(I) and Cu(I) complexes are observed as shoulders of the stronger ligand-based absorption band tailing out to 400-500 nm. The electrochemically active complexes and ligands were studied by cyclic voltammetry and square-wave voltammetry. All ligands show one first reversible one-electron reduction located at the phenazine portion. These reductions are shifted to more positive redox potentials upon complexation. Oxidation potentials for reversible processes could be determined for the Ru2+/Ru3+ couple. For rhenium(I) and copper(I) complexes one irreversible oxidation process is observed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号