首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper investigates the influence of mechanical grinding on pozzolanic characteristics of circulating fluidized bed fly ash (CFA) from the dissolution characteristics, paste strength, hydration heat and reaction degree. Further, the hydration and hardening properties of blended cement containing different ground CFA are also compared and analyzed from hydration heat, non-evaporable water content, hydration products, pore structure, setting time and mortar strength. The results show that the ground CFA has a relatively higher dissolution rate of Al2O3 and SiO2 under the alkaline environment compared with that of raw CFA, and the pozzolanic reaction activity of ground CFA is gradually improved with the increase of grinding time. At the grinding time of 60 min, the pozzolanic reaction degree of CFA paste is improved from 6.32% (raw CFA) to 13.71% at 7 days and from 13.65 to 28.44% at 28 days, respectively. The relationships of pozzolanic reaction degree and grinding time of CFA also conform to a quadratic function. For ground CFA after a long-time grinding such as 60 min, the hydration heat and non-evaporable water content of blended cement containing CFA are significantly improved. Owing to relatively smaller particle size and higher activity of ground CFA, the blended cement paste has more hydration products, narrower pore size distribution and lower porosity. For macroscopic properties, with increase in grinding time of CFA, the setting time and strength of blended cement are gradually shortened and improved, respectively.  相似文献   

2.
The rate of heat evolution as well as total heat output are strongly affected by other components of hydrating mixture, apart from neat portland cement, such as slag, fly ash and other industrial by-products; among them the wastes from fluidised bed combustion (FBC) has been taken into account recently. In this study the calorimeter was applied to follow the early hydration of cements produced with these materials. They interact with cement paste in a few ways: as set controlling agent and as active pozzolanic admixtures. Thus the rate of heat evolution/hydration is modified, depending on the composition of clinker and percentage of waste in the mixture. After the series of measurements for clinker-waste mixture hydrated systems also some ‘model’ mixtures were investigated to separate the effects from particular waste components. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

3.
Binders containing large amounts of cement substitutes have been a subject of interest for many years because of the possibility to reduce the amount of cement in concrete, and in consequence decrease negative influence of cement production on natural environment. In this work, studies related to hydration of binders where 80 % of cement was substituted by blended pozzolana were carried out. The aim of this work was to investigate activation of fly ash–cement system by addition of spent aluminosilicate catalyst, using calorimetry and thermal analysis as main methods of investigations. It was demonstrated that spent fine-grained fluidised catalytic cracking catalyst acts acceleratingly on early hydration of binder. It seems to be beneficial to use up to 10 mass% of this spent catalyst. Higher amounts may cause changes in the mechanism of early hydration. Because Ca(OH)2 in such systems is quickly consumed due to pozzolanic reaction it seems beneficial to modify composition of binders by introducing additional amounts of Ca(OH)2 or cement.  相似文献   

4.
The shelf life of cement and cement-based dry mixtures is often determined by ageing of such materials. The ageing is the result of interactions between cement and other components of cementitious mixtures with moisture as well as with CO2 from the atmosphere. In this work, the ageing behaviour of calcium aluminate cement and its mixtures with additives of microsilica, fluidized catalytic cracking catalyst waste and ground quartz sand were investigated. The ageing was achieved by storing cement and its mixtures in a climatic chamber for 7 and 14 days at 95% relative humidity and 20 ± 1 °C temperature. Applying thermal analysis, XRD analysis as well as scanning electronic microscopy, it was established that hydration of the cement minerals takes place along with carbonation during the ageing process of cement and its mixtures. The quantities of the products formed during ageing and their crystallinity depend on the nature of additives and the duration of ageing. When applying the method of calorimetric analysis, the influence of ageing on the kinetics of hydration of cement and as well as of its mixtures with the additives used in the work has been established.  相似文献   

5.
The catalyst used in fluidized catalytic cracking (FCC) units of refineries after several recovery cycles in regeneration units, reduces its activity and it is partially substituted by new catalyst in the process. As it has a high silicon and aluminum oxides content, the pozzolanic properties of a Brazilian FCC spent residual catalyst, used in different substitution degrees to cement, were evaluated by three thermal analysis techniques during the early stages of hydration of a type II Portland cement. NCDTA curves show in real time that the residual catalyst, accelerates the stages of cement hydration. TG and DSC curves of respective pastes after 24 h of hydration evidence the pozzolanic activity of the waste, respectively, by the lower water mass loss during the dehydroxylation of the residual calcium hydroxide and by the lower dehydroxylation endothermal effect. Within the analyzed period, the higher is the cement substitution degree, the higher is the pozzolanic activity of the residual catalyst.  相似文献   

6.
Fluidized catalytic cracking units of refineries normally use zeolite catalysts to treat heavy oil fractions. This catalyst is regenerated continuously, but due to the reduction of its activity during the process, it is partially substituted by a new catalyst make-up. The spent residue has a high content of silicon and aluminum oxides and usually presents pozzolanic properties. This paper presents the study of a Brazilian spent catalyst, which is being tested as a pozzolanic aggregate in partial substitution to cement. Pastes were prepared with 15, 20 and 25% in substitution to cement mass and analyzed after 28 days of hydration. Hydrated paste samples were analyzed by simultaneous thermogravimetry and differential thermal analysis, to quantify the calcium hydroxide consumption, as well as the content of other main hydrated cement phases. Compressive strength analysis was also performed after 28 days of hydration. Although, as spent catalyst content is increased, the pozzolanic activity is confirmed by the increase of calcium hydroxide consumption on cement mass basis, unlikely to other studied spent FCC catalysts, tested for the same purpose, the compressive strength of respective paste specimens decreases, due to the increase of other hydrated phases formation.  相似文献   

7.
Pozzolans play an important role in the industry of cement and concrete. They increase the mechanical strength of cement matrices and can be used to decrease the amount of cement in concrete mixtures, thus decreasing the final economic and environmental cost of production; also, as some of them are byproducts of industrial processes (such as silica fume and fly ash) and their use can be seen as a solution for some residues, that otherwise would be disposed as a waste. Pozzolans fixate the Ca(OH)2 generated during cement’s hydration reactions to form calcium silicate hydrates (C–S–H), calcium aluminate hydrates (C–A–H), or calcium aluminosilicate hydrates (C–A–S–H), depending on the nature of the pozzolan. Traditionally, the pozzolanic activity is identified using the Ca(OH)2 fixation percentage which is quantified by thermogravimetric (TG) analysis, using the mass loss due to the Ca(OH)2 dehydroxylation around 500 °C. An alternative method to identify pozzolanic activity at lower temperatures using a standard issue moisture analyzer (MA) is presented in this paper, using the mass loss due to hydrate’s dehydration generated by pozzolans in the pozzolanic reaction. Samples of Ca(OH)2 blended with different pozzolans were prepared and tested at different hydration ages. Using TG analysis and an MA, a good correlation was found between the total mass loss of the same sample, using the two methods at the same temperature. It was concluded that the MA method can be considered a less expensive and less time-consuming alternative to identify pozzolanic activity of siliceous or aluminosiliceous materials.  相似文献   

8.
This work presents the relation between the pozzolanic activity, the hydration heat and the compressive strength developed by blended mortars containing 10 and 35% of a spent fluid catalytic cracking catalyst (FCC). The results show that, in comparison with 100% Portland cement mortar, a mortar with 10% FCC increases the hydration heat all over the period of testing. This hydration heat increasing is due to the pozzolanic effect, therefore the resulting compressive strength is higher than the reference mortar. Whereas, in a mortar with 35% of FCC, the hydration heat is higher than 100% PC mortar, until 10 h of testing. After this age, the substitution degree predominates over the pozzolanic activity, showing in this case, lower hydration heat and developing lower compressive strength than 100% PC mortar.  相似文献   

9.
The use of calcined clays as partial replacement of cement is encouraged since it promotes the reduction of the green-house gas emission and the energy requirement of cement-based material, maintaining or enhancing the mechanical properties and the durable performance of these materials. In this paper, the use of thermal methods—DTA/TG and calorimetry—to select and to evaluate two kaolinitic clays for their use as pozzolanic materials was explored. The content and crystallinity of kaolinite in clays can be determined by DTA/TG analysis, and this technique is also suitable to select the calcination temperature for complete kaolinite dehydroxylation. Calorimetric analysis on blended cements (30 % by mass of replacement) can differentiate the reactivity of calcined kaolinitic clays. Results show that more reactive calcined kaolinitic clay develops the second and third peaks earlier than those of PC with great intensity and high acceleration. The reactivity of calcined clays is associated to raw materials containing kaolinite with high structural disorder that determines calcined clays with large specific surface area, high grindability, and small mean particles size (d 50) for the same grinding objective. Finally, the DTA/TG analysis can determine the type and the amount of hydrated phases obtained at different ages to evaluate the pozzolanic reaction of calcined clay in accordance with the standardized pozzolanic activity index.  相似文献   

10.
A study was carried out comparing silica fume (SF) and dealuminated kaolin (DK) as pozzolanic materials in blended cements. Ten, 20 or 30 wt% of SF or DK were substituted for Portland cement. The kinetics of hydration up to 45 h were studied using isothermal conduction calorimetry. Blends containing pozzolanic materials usually have decreased heats of hydration compared to pure cement during the period of C3S hydration, i.e. during the main hydration peak. Depending on the chemical composition and the activity of the pozzolan, the reaction taking place with the lime typically contributes to the heat output after the main hydration peak.The pozzolanic activity of DK is the principal factor and heat evolution increases with respect to pure PC mortar, during the first 15 h. The presence of hydrated silica (silanol groups) in DK increases the pozzolanic activity especially before and during induction period. The acidic silanol sites are capable of a fast acid-base reaction with the alkalis and with any Ca(OH)2 present in cement during the induction period.  相似文献   

11.
The pozzolanic properties of the equilibrium catalyst (Ecat), an abundant waste from fluid catalytic cracking units of oil refineries, have been studied in cementitious matrices. The consumption of calcium hydroxide is usually taken as a means to assess the pozzolanicity of a material, ignoring the formation of C–S–H and other hydrates, the main product of the pozzolanic reaction. The use of thermal analysis methods allows the identification and quantification of the products of the hydration reaction, based on the loss of chemically combined water of phases present in a cementitious matrix. In the present study, TG/DTG techniques were used to quantify the amount of C–S–H + ettringite, C–A–S–H + C–A–H, and calcium hydroxide in cement–Ecat pastes, containing 0–40 % Ecat, aged for 1–28 days. The influence of the content of these phases on the mechanical properties of the resulting samples was also investigated by axial compression. The results further confirmed the pozzolanic activity of Ecat, so that the production of C–S–H and C–A–S–H increased with the aging time, but in a smaller amount than in the reference paste. The compressive strength test showed that the pastes containing 10 % Ecat, aged for 14 and 28 days, presented improved properties as compared to the corresponding references.  相似文献   

12.
Study on optimization of hydration process of blended cement   总被引:1,自引:0,他引:1  
To optimize the hydration process of blended cement, cement clinker and supplementary cementitious materials (SCMs) were ground and classified into several fractions. Early hydration process of each cementitious materials fraction was investigated by isothermal calorimeter. The results show fine cement clinker fractions show very high hydration rate, which leads to high water requirement, while fine SCMs fractions present relatively high hydration (or pozzolanic reaction) rate. Cement clinker fractions in the range of 8–24 μm show proper hydration rate in early ages and continue to hydrate rapidly afterward. Coarse cement clinker fractions largely play “filling effect” and make little contribution to the properties of blended cement regardless of their hydration activity (or pozzolanic activity). The hydration process of blended cement can be optimized by arranging high activity SCMs, cement clinker, and low activity SCMs in fine, middle, and coarse fractions, respectively, which not only results in reduced water requirement, high packing density, and homogeneous, dense microstructure, but also in high early and late mechanical properties.  相似文献   

13.
This paper reports an investigation of the effect of the particle size of kaolin on its transformation to metakaolinite. Kaolin from the island of Milos was either crushed or ground in order to produce four samples with different degrees of fineness (residue at 500 μm: 0–71.8%). The samples were treated thermally under different conditions in order to determine the optimum treatment conditions. The conversion of kaolinite to metakaolinite and the structural changes in the material during treatment were investigated by means of TG and XRD, respectively. Each sample was incorporated into a type I cement, at 20% by mass of cement, and the compressive strengths of the resulting blended cements were measured. It is concluded that the particle size of the raw kaolin does not affect the thermal conversion or the pozzolanic activity of the material. The use of crushed kaolin has many benefits since the furnace load can be increased, while the grinding process is needed only to reduce the size of the metakaolinite particles. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
Cementitious mixtures with so-called high calcium fly ash show better strength parameters as compared to the ones with conventional siliceous fly ash. This practical feature is the consequence of improved hydraulic activity. Differential thermal analysis and thermogravimetry were used, together with the other methods, to evaluate the reactivity of high calcium fly ash in mixtures with cements. This type of fly ash exhibits hydraulic properties (setting and hardening on hydration) and durability, after hardening, in the presence of water. The so-called pozzolanic activity is the feature of high active silica containing fly ash while the hydraulic activity is related to the high calcium ones. However, the chemical and phase composition is variable and related to the particle size. The hydraulic/ pozzolanic properties are strongly improved by additional grinding (specific surface increase).  相似文献   

15.
The present study is based on the influence of the addition of a pozzolanic material as a result of the activation of an industrial waste coming from the Spanish paper industry on the heating as well as hydration heat of the cement mortars made with 10 or 20% of active addition. Once the sludge has been calcined at different temperatures (700–800°C) and stays in furnace (2 and 5 h), the calcined products showed high pozzolanic activity. The maximum activity corresponded to the paper sludge calcined at 700°C for 2 h (S1). Besides, it can be proved that there was an increase both of the heating and also of the hydration heat in the first 23–25 h for both additions (10 and 20% of S1) regarding the reference cement mortar. This behaviour would be related to the influence of different effects: filler and pozzolanic during the first hours of reaction, and by the dilution effect for longer hydration times, mainly when 20% of S1 was added.  相似文献   

16.
Two types of raw materials, original kaolin sand OKS I and OKS II were used for experiment. They were transformed (1 h at 650 °C with 10 °C/min temperature increase) to burnt kaolin sand (BKS I and BKS II) with pozzolanic properties. Contents of decisive mineral—metakaolinite—in BKSs are as follows: BKS I (fraction below 0.06 mm) 20%; BKS II (fraction below 0.06 mm) 36% and BKS II (fraction below 0.1 mm) 31% by mass. Mortars with blends of Portland cement (PC) and BKS were prepared announced as: MK I (0.06) with 5 and 10% cement substitution by metakaolinite; MK II (0.06) with 5 and 10% cement substitution by metakaolinite and MK II (0.1) with 5, 10, 15 and 20% cement substitution by metakaolinite. The reference mortar with 100% of PC was made for comparison. All mortars were adjusted on the constant workability 180 ± 5 mm flow. Besides significant increase in compressive strengths—the refinement of pore structure in mortars with BKS connected with decreases in permeability and Ca(OH)2 content were revealed. The above facts confirm pozzolanic reaction of BKS in contact with hydrated PC and indicate perceptiveness of BKS for the use in cement-based systems as a pozzolanic addition.  相似文献   

17.
Determination of pozzolanic activity of materials by thermal analysis   总被引:1,自引:0,他引:1  
The results of pozzolanic activity determination using DTA-TG method are presented. This feature was characterised by Ca(OH)2 residue determination in cement pastes admixtured with siliceous earth, consuming the calcium ions from hydrolysis of cement clinker minerals. The rate of pozzolanic reaction was thus estimated. Some results for fly ash containing pastes were also given. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Pozzolanic cement blends were prepared by the partial substitution of ordinary Portland cement (OPC) with different percentages of burnt clay (BC), Libyan clay fired at 700 °C, of 10, 20, and 30%. The pastes were made using an initial water/solid ratio of 0.30 by mass of each cement blend and hydrated for 1, 3, 7, 28, and 90 days. The pozzolanic OPC–BC blend containing 30% BC was also admixed with 2.5 and 5% silica fume (SF) to improve the physicomechanical characteristics. The hardened pozzolanic cement pastes were subjected to compressive strength and hydration kinetics tests. The results of compressive strength indicated slightly higher values for the paste made of OPC–BC blend containing 10% BC The results of DSC and XRD studies indicated the formation and later the stabilization of calcium silicates hydrates (CSH) and calcium aluminosilicate hydrates (C3ASH4 and C2ASH8) as the main hydration products in addition to free calcium hydroxide (CH). Scanning electron microscopic (SEM) examination revealed that the pozzolanic cement pastes made of OPC–BC mixes possesses a denser structure than that of the neat OPC paste. Furthermore, the addition of SF resulted in a further densification of the microstructure of the hardened OPC–BC–SF pastes; this was reflected on the observed improvement in the compressive strength values at all ages of hydration.  相似文献   

19.

Portland cement was partially replaced by metakaolin (MK), silica fume (SF) and ground granulated blast-furnace slag (BFS). Globally, two amounts of SF (5 and 10 mass%) and total substitution level of 35 mass% were used to prepare blended samples. Their early and 28 days hydration was studied by means of isothermal calorimetry and thermal analysis. Developed phase composition was assessed using compressive strength measurements. Acceleration of cement hydration in early times was proved and reflected higher amounts of finer additives. Despite dilution effect, the presence of more reactive SF and MK resulted in pozzolanic reactions manifesting already before 2 days of curing and contributing to the formation of strength possessing phases. The influence of BFS addition showed later and thanks to the synergic effect of all the used additives; it was possible to increase its content up to 25 mass% by keeping the compressive strength values near that of referential one.

  相似文献   

20.

The influence of phosphate slag with different finenesses and activators on the hydration of high-belite cement has been studied by using the hydration heat of binders, the DTA curves, the SEM images, and the specific strength. Results indicated that doped phosphorus slag in the cement will reduce heat of hydration. The activity of phosphate slag was low at early stage, but pozzolanic activity of phosphorus slag is higher than that of fly ash. Increasing the specific surface area and curing time and using Ca(OH)2 combined with gypsum can clearly promote the hydration degree of phosphorus slag. The findings in this paper show that since phosphorus slag can promote the hydration of high-belite cement, the strength contribution of cement is increased. Moreover, the greater the specific surface area is, the more significant the promotion effect at 90 d is.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号