首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The cell glycocalyx is an attractive model for surface modification of liposomes, because its hydrated oligosaccharide layer inhibits nonspecific protein adsorption and can provide specificity towards desired sites. Here, we report on the use of lactose as a model saccharide to modify the liposome surface and examine the vesicle size and stability. Two kinds of lactosyl lipids, including lactosyl ether-lipid (6a) and lactosyl ester-lipid (6b), which contain octadecyl and octadecanoyl as the lipid tails, respectively, were synthesized and their liposomes were prepared by the extrusion method. The effects of glycolipid structure, concentration, and the pore size of the extrusion membrane on vesicle size and stability were investigated at room temperature by photon correlation spectroscopy (PCS). All liposomes with 5 or 10 mol% of lactosyl lipids had a narrow size distribution and remained stable at room temperature for at least one month, which is comparable to 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC)- and poly(ethylene glycol) (PEG)-liposomes. The maximum incorporation of lactosyl ester-lipid into liposomes was 15 mol%, compared with only 10 mol% for the lactosyl ether-lipid. The lactosyl ester-liposomes had better stability and exhibited less size change than the lactosyl ether-liposomes at 15 or 20 mol% of lactosyl lipids incorporated. This may be attributed to the better structural compatibility of lactosyl ester-lipid with DSPC. The PCS results show that the glycolipid structure and concentrations are major factors that affect vesicle stability, while the pore size of extrusion membranes has no influence.  相似文献   

2.
The stability of zwitterionic phosphatidylcholine vesicles in the presence of 20 mol% phosphatidyl serine (PS), phosphatidic acid (PA), phosphatidyl inositol (PI), and diacylphosphatidyl glycerol (PG) phospholipid vesicles, and cholesterol or calcium chloride was investigated by asymmetrical flow field-flow fractionation (AsFlFFF). Large unilamellar vesicles (LUV, diameter 100 nm) prepared by extrusion at 25 °C were used. Phospholipid vesicles (liposomes) were stored at +4 and −18 °C over an extended period of time. Extruded egg yolk phosphatidylcholine (EPC) particle diameters at peak maximum and mean measured by AsFlFFF were 101 ± 3 nm and 122 ± 5 nm, respectively. No significant change in diameter was observed after storage at +4 °C for about 5 months. When the storage period was extended to about 8 months (250 days) larger destabilized aggregates were formed (172 and 215 nm at peak maximum and mean diameters, respectively). When EPC was stored at −18 °C, large particles with diameters of 700–800 nm were formed as a result of dehydration, aggregation, and fusion processes. In the presence of calcium chloride, EPC alone did not form large aggregates. Addition of 20 mol% of negatively charged phospholipids (PS, PA, PI, or PG) to 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylcholine (POPC) vesicles increased the electrostatic interactions between calcium ion and the vesicles and large aggregates were formed. In the presence of cholesterol, large aggregates of about 250–350 nm appeared during storage at +4 and −18 °C for more than 1 day.

The effect of liposome storage temperature on phospholipid coatings applied in capillary electrophoresis (CE) was studied by measuring the electroosmotic flow (EOF). EPC coatings with and without cholesterol, PS, or calcium chloride, prepared from liposomes stored at +25, +4, and −18 °C, were studied at 25 °C. The performances of the coatings were further evaluated with three uncharged compounds. Only minor differences were observed between the same phospholipid coatings, showing that phospholipid coatings in CE are relatively insensitive to storage at +25, +4 °C or −18 °C.  相似文献   


3.
We studied the effects of the degree of ionization() and the surfactant concentration (Cd) on the micelle–vesicle transition in salt-free oleyldimethylamine oxide (OlDMAO) aqueous solutions by the dynamic light scattering (DLS), the hydrogen ion titration, the small angle neutron scattering (SANS), the electrophoretic light scattering (ELS) and viscoelastic measurements. From the study of ionization effects, the micelle–vesicle transition was recognized as a change of aggregate size by the DLS measurement; however, the micelle–vesicle transition was not detected both in the ELS measurement and the hydrogen ion titration, suggesting that the electric properties of the worm-like micelles and the vesicles are very similar despite a large difference of shapes between them. From the results of the SANS, the DLS and the viscosity measurements, it was suggested that a concentration-dependent micelle–vesicle transition took place around Cp = 10 mmol kg−1 for the solutions at = 0.5. In the concentration-range 10 mmol kg−1 < Cd < 150 mmol kg−1, the micelles and the vesicles coexisted. In the concentration region (Cd = 10–50 mmol kg−1), the vesicle size increased with the surfactant concentration.  相似文献   

4.
Vesicles formed from the polymerizable phospholipid, 1,2-diacyl-sn-glycero-3-(N-2(methacryloyloxy)ethyl)-phosphocholine, and the crosslinker, 1,2-dihydroxyethylene-bis-acrylamide, exhibit significantly enhanced stability relative to egg phosphatidylcholine (PC) vesicles. As evidenced by absorbance measurements, methacrylate PC vesicles with a 1 : 75 crosslinker-to-lipid molar ratio retain their integrity in up to 20% (v/v) ethanol as opposed to <10% (v/v) for egg PC vesicles. These crosslinked-polymerized vesicles also remain impermeable to Cd2+ (in the absence of ionophore) for up to 15 mM octyl glucoside. Furthermore, the crosslinked-polymerized vesicles show enhanced stability under osmotic stress. These inprovements in vesicle robustness are attained without dramatic loss in A23187-mediated Cd2+ permeability. The initial Cd2+ permeability of crosslinked-polymerized (1 : 75 crosslinker-to-lipid molar ratio) and egg PC vesicles, with A23187 as ionophore, measured 6.0 × 10−5 and 9.8 × 10−5 cm s−1, respectively.  相似文献   

5.
 The characteristics of poly(oxyethylene) hydrogenated caster oil ether (HCO-10) vesicles were studied for the standpoints of encapsulation efficiency, stability, solubilization and permeability or barrier efficiency. The vesicles of 5% HCO-10 had 6.24% of calcein-entrapment efficiency and 240 nm of mean diameter. The stability of HCO-10 vesicle suspensions was dependent on their concentrations. In the vesicle suspensions of 10% HCO-10 or more, both the size of the vesicles and the fluidity of the suspensions obviously varied with incubation time, indicating that a flocculation occurred; whereas, the vesicle suspension of 5% HCO-10 was relatively stable. The solubilization process of HCO-10 vesicles by SDS was similar to that of EggPC liposomes. The rate constants for permeation of Cl ion and calcein were 2.46×10-3 s-1 and 5.79×10-5 s-1, respectively, suggesting that HCO-10 vesicles possessed some barrier potential for Cl ion and calcein although they were smaller than those of liposomes. Furthermore, the efflux of the solute such as calcein from HCO-10 vesicles was maximum at 37 °C, where the vesicle membrane was presumably destabilized by dehydration of EOs in HCO-10 molecules. Received: 7 May 1996 Accepted: 3 September 1996  相似文献   

6.
Cationic liposomes composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmityldimethylammmonium bromide (DPAB) were prepared by the Bangham method and the effect of DPAB on the membrane properties was examined in terms of liposomal shape, particle size, trapping efficiency, surface potential and dispersibility. The dispersibility of the mixed DPPC/DPAB liposomes (the mole fraction of DPAB (XDPAB)  0.05) was excellent and the dispersibility was maintained for 6 months, since the zeta-potential of the mixed liposomes was approximately +40 mV. The trapping efficiency of the mixed DPPC/DPAB liposomes (XDPAB = 0.05) was 10 times greater than that of the DPPC liposomes, and the value was largest among the mixed liposomes (XDPAB = 0–1.0). Freeze-fracture electron micrographs indicated that the shape of the mixed DPPC/DPAB liposomes (XDPAB = 0.05) was that of large unilamellar vesicles (LUVs) with a diameter of approximately 2 μm, while the shape of the DPPC liposomes was that of multilamellar vesicles (MLVs). The mixed liposomes had, therefore, a high trapping efficiency. Furthermore, the shape of the mixed DPPC/DPAB liposomes (XDPAB = 0.75) was also that of LUVs with a diameter of approximately 2 μm and these had a high trapping efficiency. Whereas, the particle size (500 nm) of the mixed DPPC/DPAB liposomes (XDPAB = 0.25) was smaller than that of the former and had the minimum trapping efficiency. The phase transition temperature of the liposomal bilayer membranes indicated a maximum value at 0.25–0.30 mole fractions of DPAB. These facts were considered to be due to the fact that DPPC and DPAB, whose molar ratio was 7.5:2.5, were tightly packed in the liposomal bilayer membranes and that the curvature of the liposomal particle was resultantly large. Nevertheless, LUVs having a high trapping efficiency were easily obtained by mixing a small amount of DPAB with the DPPC.  相似文献   

7.
The stability and size control of reverse vesicles have been investigated for a sucrose monoalkanoate/hexaethylene glycol hexadecyl ether/decane/water system. The stability is highly dependent on the surfactant mixing ratio, amount of added water, and vesicle size. The size distribution of reverse vesicles produced by simple mixing is very large, but larger vesicles can be removed by means of the extrusion method and reasonably homogeneously size-distributed reverse vesicles can be obtained. If a probe-type ultrasonicator is used, the reverse vesicles obtained are homogeneous and of very small size (50-70 nm in diameter) and they are considered to be of the unilamellar type.  相似文献   

8.
In the FBX dosimeter solution, the excitation of xylenol orange (XO) produces maximum emission at 550–575 nm both at room and liquid nitrogen temperatures (about 85%) having a lifetime of 0.20–0.36 ns. In addition, at room temperature there is an emission at 350 nm for the excitation at 260 nm (about 15%) having a longer lifetime of 3.71–4.01 ns. Benzoic acid (BA) has excitation at 284–295 nm and emission at 320–365 nm having a lifetime of 1.38 ns. In an aqueous solution containing 5×10−3 mol dm−3 BA, 2×10−4 mol dm−3 XO and 0.04 mol dm−3 H2SO4 there is no XO emission at 550 nm due to UV absorption at 260 nm by BA. In this solution, 2 emissions are observed near 350–360 nm, having lifetimes of 1.25 ns (89%) and 2.86 ns (11%). The wavelengths for the emission of XO and absorption of ferric-XO complex are nearly the same. Excited XO produces oxidation of ferrous ions and BA increases the chain length.  相似文献   

9.
Cholesterol analogs containing sugar residues linked by spacer groups to the cholesterol O can be incorporated into egg yolk lecithin small unilamellar liposomes. The synthetic glycolipid analogs distribute evenly on both sides of the bilayer. These liposomes are aggregated by the appropriate lectin. For example, when the sugar residue is a beta-galactoside the liposomes are aggregated by ricin and when it is an alpha-mannoside they are aggregated by Con A. The lectin-mediated aggregation of these liposomes is reversed by the addition of the appropriate sugar. The rates but not the extents of aggregation of these liposomes are highly sensitive to the amount of glycolipid incorporated. Below approximately 5% glycolipid incorporation the rate of the lectin-mediated aggregation of these liposomes is exceedingly slow, whereas above this level rapid aggregation proceeds. At all concentrations studied the synthetic glycolipids are incorporated in a unimodal fashion so that the observed threshold effects cannot be based on possible differences in the manner in which the glycolipids are incorporated at different concentrations. This conclusion is based on 1) studies with galactose oxidase that show that the percentage of galactose oxidation in a liposome prepared from a galactosyl-containing glycolipid is independent of glycolipid concentration, and 2) studies on the aggregation of liposomes containing mixed glycolipids in which the glycolipids are shown to behave independently. The importance of a critical density of membrane-bound receptors in order for aggregation to occur is discussed.  相似文献   

10.
Membrane interactions of liposomes of ternary phospholipid/cholesterol bilayers are investigated. These interactions lead to discoidal deformations and regular aggregations and are strongly enhanced by the presence of mistletoe lectin (ML), a RIP II type protein. The encapsulation of ML into liposomal nanocapsules is studied with a systematic variation of the lipid composition to monitor its effect on the physical properties: entrapment, mean size, morphology, and stability. Extrusion of multilamellar vesicles through filters 80 nm pore size was used for the generation of liposomes. The mean sizes of liposomes ranged between 120 and 200 nm in diameter with narrow size distributions. The increase in flow rate with pressure for three dioleoylphosphatidylcholine (DOPC)/cholesterol (Chol)/dipalmitoylphosphatidylcholine (DPPC) lipid mixtures was linear and allowed to extrapolate to the minimum burst pressure of the liposomal bilayers. From the minimum pressures P(min), the bilayer lysis tensions gamma(l) were determined. The increase in P(min) and gamma(l) with an increasing content of a saturated phosopholipid (DPPC) indicates that DPPC increases the mechanical strength of lipid bilayers. Apparently, DPPC, like cholesterol, leads to a less compressible surface and a more cohesive membrane. After preparation, vesicle solutions were purified by gel permeation chromatography to separate encapsulated ML from free ML in the extravesicular solution. Purified liposomes were then characterized. The content of entrapped and adsorbed ML was measured using ELISA. Repetitive freezing/thawing cycles prior to extrusion significantly increased ML uptake. On the contrary, adsorption was not affected neither by lipid composition, nor concentration and preparation. Differences in experimental encapsulation efficiency only reflect the differences in the mean vesicle sizes of the different samples as is revealed by a comparison to a theoretical estimate. Cryo-transmission electron microscopy (Cryo-TEM) images show that beside spherical, single-walled liposomes, there is a considerable fraction of discoidally deformed vesicles. Based on our results and those found in the literature, we speculate that the flattening of the vesicles is a consequence of lipid phase separation and the formation of condensed complexes and areas of different bending elasticities. This phenomenon eventually leads to agglomeration of deformed liposomal structures, becoming more pronounced with the increase in the relative amount of saturated fatty acids, presumably caused by hydrophobic interaction. For the same lipid mixture aggregation correlated linearly with the ML content. Finally, tested liposomal samples were kept at 4 degrees C to examine their stability. Only slight fluctuations in diameter and the increase in polydispersity after 3 weeks of storage occurred, with no statistically significant evidence of drug leakage during a time period of 12 days, illustrating physical stability of liposomes.  相似文献   

11.
Xue J  Zhu J  Marchant RE  Guo Z 《Organic letters》2005,7(17):3753-3756
A glycolipid containing three SO(3)Le(a) ligands was synthesized with pentaerythritol as the core. The glycolipid was used to prepare glycoliposomes that showed stability similar to that of DSPC liposomes without glycolipid. The easily prepared derivatives of pentaerythritol proved to be useful scaffolds for multivalent displaying of carbohydrates in the form of glycolipids and clustered glycoliposomes. [structure: see text]  相似文献   

12.
We assess the role of lateral tension in rupturing anionic dipalmitoylphosphatidyserine (DPPS), neutral dipalmitoylphosphatidylcholine (DPPC), and mixed DPPS-DPPC vesicles. Binding of Ca(2+) is known to have a significant impact on the effective size of DPPS lipids and little effect on the size of DPPC lipids in bilayer structures. In the present work we utilized laser transmission spectroscopy (LTS) to assess the effect of Ca(2+)-induced stress on the stability of the DPPS and DPPC vesicles. The high sensitivity and resolution of LTS has permitted the determination of the size and shape of liposomes in solution. The results indicate a critical size after which DPPS single shell vesicles are no longer stable. Our measurements indicate Ca(2+) promotes bilayer fusion up to a maximum diameter of ca. 320 nm. These observations are consistent with a straightforward free-energy-based model of vesicle rupture involving lateral tension between lipids regulated by the binding of Ca(2+). Our results support a critical role of lateral interactions within lipid bilayers for controlling such processes as the formation of supported bilayer membranes and pore formation in vesicle fusion. Using this free energy model we are able to infer a lower bound for the area dilation modulus for DPPS (252 pN/nm) and demonstrate a substantial free energy increase associated with vesicle rupture.  相似文献   

13.
Novel sul-containing fluorinated polyimides have been synthesized by the reaction of 2,2′-bis-(trifluoromethyl)-4,4′-diaminodiphenyl sulfide (TFDAS) with 1,4-bis-(3,4-dicarboxyphenoxy)benzene dianhydride (HQDPA), 2,2′-bis-(3,4-dicarboxyphenyl)hexafluoropropane dianhydride (6FDA), 4,4′-oxydiphthalicanhydride (ODPA) or 3,4,3′,4′-biphenyl-tetracarboxylic acid dianhydride (s-BPDA). The fluorinated polyimides, prepared by a one-step polycondensation procedure, have good solubility in many solvents, such as N-methyl-2-pyrrolidinone (NMP), dimethylacetamide (DMAc), dimethyl sulfoxide (DMSO), cyclohexanone, tetrahydrofuran (THF) and m-cresol. The molecular weights (Mn's) and polydispersities (Mn/Mw's) of polyimides were in the range of 1.24 × 105 to 3.21 × 105 and 1.59–2.20, respectively. The polymers exhibit excellent thermal stabilities, with glass-transition temperatures (Tg) at 221–275 °C and the 5% weight-loss temperature are above 531 °C. After crosslinking, these polymers show higher thermal stability. The films of polymers have high optical transparency. The novel sul-containing fluorinated polyimides also have low absorption at both 1310 and 1550 nm wavelength windows. Rib-type optical waveguide device was fabricated using the fluorinated polyimides and the near-field mode pattern of the waveguide was demonstrated.  相似文献   

14.
Liposomes containing distearoylphosphatidylethanolamine with covalently linked polyethylene glycol of molecular weight 2,000 (DSPE-PEG2000) covering a range of 0–30 mol% were prepared by a mechanical dispersion or detergent-removal method. The effects of DSPE-PEG2000 on particle sizes and lamellarity of liposomes were investigated. The average diameters of vesicles prepared from both methods decreased when the concentration of DSPE-PEG2000 was increased. The decrease in vesicle size with increase in DSPE-PEG2000 was ascribed to the steric hindrance of strongly hydrated PEG. The significant decrease in the sizes of DSPE-PEG2000-containing EggPC vesicles prepared by the detergent-removal method could be explained by the postvesiculation size growth in the process of micelle–vesicle transition. For DMPC vesicles prepared by the detergent-removal method, electron micrographs showed that inclusion of DSPE-PEG2000 promoted vesicle formation. Based on the results of investigation of calcein entrapment efficiency, we concluded that the lamellarity of liposomes is reduced as PEG lipid concentration is increased. Fragmentation of multilamellar vesicles into smaller unilamellar vesicles occurred more readily when the liposome suspension was subjected to repetitive freeze-thawing. After five cycles of freezing and thawing, vesicles containing more than 0.5 mol% DSPE-PEG2000 were fragmented into unilamellar vesicles with diameters smaller than 300 nm.  相似文献   

15.
Li YS  Ju X  Gao XF  Zhao YY  Wu YF 《Analytica chimica acta》2008,610(2):249-256
A new method for the determination of lactic acid based on the immobilization enzyme fluorescence capillary analysis (IE-FCA) was proposed. Lactic dehydrogenase (LDH) was immobilized on inner surface of a capillary with glutaraldehyde, and an immobilized enzyme lactate capillary bioreactor (IE-LCBR) was formed for the determination of lactic acid. After nicotinamide adenine dinucleotide (NAD+) is mixed with lactic acid solution, it was sucked into the IE-LCBR and was detected at λex 353 nm/λem 466 nm. Optimized conditions are as follows: the temperature is 38 °C; the reaction time is 15 min; the concentrations of Tris buffer (pH 8.8) and NAD+ are 0.1 mol L−1 and 4 mmol L−1, respectively; the concentration of LDH used for immobilization is 15 kU L−1. The concentration of lactic acid is directly proportional to the fluorescence intensity measured from 0.50 to 2.0 mmol L−1; and the analytical recovery of added lactic acid was 99–105%. The minimum detection limit of the method is 0.40 mmol L−1 and sensitivity of the IE-CBR is 4.6 F mmol−1 L−1 lactate. Its relative standard deviation (R.S.D.) is ≤2.0%. This IE-FCA method was employed for determination of lactate in milk drink.  相似文献   

16.
Automated sequential injection (SIA) method for chemiluminescence (CL) determination of nonsteroidal anti-inflammatory drug indomethacin (I) was devised. The CL radiation was emitted in the reaction of I (dissolved in aqueous 50% v/v ethanol) with intermediate reagent tris(2,2′-bipyridyl)ruthenium(III) (Ru(bipy)33+) in the presence of acetate. The Ru(bipy)33+ was generated on-line in the SIA system by the oxidation of 0.5 mM tris(2,2′-bipyridyl)ruthenium(II) (Ru(bipy)32+) with Ce(IV) ammonium sulphate in diluted sulphuric acid. The optimum sequence, concentrations, and aspirated volumes of reactant zones were: 15 mM Ce(IV) in 50 mM sulphuric acid 41 μL, 0.5 mM Ru(bipy)32+ 30 μL, 0.4 M Na acetate 16 μL and I sample 15 μL; the flow rates were 60 μL s−1 for the aspiration into the holding coil and 100 μL s−1 for detection. Calibration curve relating the intensity of CL (peak height of the transient CL signal) to concentration of I was curvilinear (second order polynomial) for 0.1–50 μM I (r = 0.9997; n = 9) with rectilinear section in the range 0.1–10 μM I (r = 0.9995; n = 5). The limit of detection (3σ) was 0.05 μM I. Repeatability of peak heights (R.S.D., n = 10) ranged between 2.4% (0.5 μM I) and 2.0% (7 μM I). Sample throughput was 180 h−1. The method was applied to determination of 1 to 5% of I in semisolid dosage forms (gels and ointments). The results compared well with those of UV spectrophotometric method.  相似文献   

17.
The integrity of liposomes when dispersed in presence of various common formulation excipients is studied. Additionally, the effect of the excipients on the release of calcein from the same liposomes when dispersed in hydrogels is investigated and the results of the two sets of experiments are compared. Propyleneglycol (PG), transcutol CG (TR), cremophor EL (CR) and labrafac hydro WL 1219 (LB) are used at 10 or 25% (v/v) and the retention of liposome encapsulated calcein is followed for 24 or 48 h periods. Calcein entrapping multilamellar liposomes composed of phosphatidylcholine (PC) or 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) with or without addition of different amounts of cholesterol (Chol) were prepared by the thin film hydration method.

Experimental results reveal that liposomes are affected more by the excipients in the order: LB > CR > PG  TR. Particularly LB and in some cases also CR result in rapid release of most or the entire vesicle encapsulated dye. Addition of Chol in both PC and DSPC liposomes results in substantial increase of vesicle integrity in all cases. Concerning the release of calcein form the liposomal gels, from DSPC/Chol (1:1) liposomal gels calcein release was not affected by addition of 25% of TR or PG in all gels studied, but LB caused a significant increase in calcein release. However, from PC-liposomal gels even TR and PG (at 25%), increases calcein release.

Conclusively, the results of this study suggest that liposomes are protected from excipients when dispersed in gels compared to aqueous media. This should be taken into account when liposomal drug formulations are designed.  相似文献   


18.
Vesicles possessing poly(ethylene glycol) (PEG) chains on their surface have been described as a blood-persistent drug delivery system with potential applications for intravenous drug administration. In this research with different molecular weights (400–10,000 g/mol) of PEG, a series of Chol–PEGm conjugates were generated by the DCC (N,N′-dicyclohexylcarbodiimide, DCC)/(4-dimethylaminopyridine, 4-DMAP) esterification method, and confirmed by FT-IR and 1H NMR spectrum. Then their properties in aqueous solution were studied by electron microscopy images, associative behavioral and systematic tensiometric studies over a wide concentration range. In order to elucidate the application of this Chol–PEGm in vesicles, conventional nonionic surfactant vesicles (niosomes) composed of span 60 and cholesterol were prepared and the influence of various hydrophilic chains of the Chol–PEGm conjugates was investigated. Results indicated that all the niosomes prepared, with or without Chol–PEGm composition were similar in micrograph with diameter between 120 nm and 180 nm. The fixed aqueous layer thickness (FALT) around niosomes increased as Chol–PEGm chain length increase, particularly in the Chol–PEG10,000 modified niosomes with 9.33 ± 0.67 nm. In vitro release experiments indicated that release rate of nimodipine from Chol–PEGm modified niosomes was enhanced. Chol–PEGm modified niosomes showed greater accumulative release than that of plain niosomes over a period of 24 h. These studies have shed some light on the suitability of Chol–PEGm containing niosome preparation.  相似文献   

19.
An electrochemiluminescence (ECL) sensor with good long-term stability and fast response time has been developed. The sensor was based on the immobilization of tris(2,2′-bipyridyl)ruthenium(II) (Ru(bpy)32+) into the Eastman-AQ55D–silica composite thin films on a glassy carbon electrode. The ECL and electrochemistry of Ru(bpy)32+ immobilized in the composite thin films have been investigated, and the modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and chlorpromazine (CPZ) in a flow injection analysis system and showed high sensitivity. Because of the strong electrostatic interaction and low hydrophobicity of Eastman-AQ55D, the sensor showed no loss of response over 2 months of dry storage. In use, the electrode showed only a 5% decrease in response over 100 potential cycles. The detection limit was 1 μmol l−1 for oxalate and 0.1 μmol l−1 for both TPA and CPZ (S/N=3), respectively. The linear range extended from 50 μmol l−1 to 5 mmol l−1 for oxalate, from 20 μmol l−1 to 1 mmol l−1 for TPA, and from 1 μmol l−1 to 200 μmol l−1 for CPZ.  相似文献   

20.
Condensation of thiosemicarbazide or N(4)-ethylthiosemicarbazide with 1,2,8,9-tetraphenyl-3,7-diazanona-1,9-dione in the presence of copper(II) acetate in 96% ethanol leads to Δ6-5,6-diphenyl-5-methoxy-1,2,4-triazacyclohexene-3-thione, C16H15N3OS, or Δ6-4-methyl-5,6-diphenyl-5-ethoxy-1,2,4-triazacyclohexene-3-thione, C18H19N3OS. For C16H15N3OS the crystal data are monoclinic, P21/c, a=9.7780(7), b=8.5120(3), c=18.2210(13) Å, β=100.958(3)°, V=1488.89(16) Å3, and Z=4 in agreement with an earlier report. For C18H19N3OS the crystal data are orthorhombic, P212121, a=8.6940(3), b=12.9946(3), c=15.5139(5) Å, V=1752.68(9) Å3, and Z=4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号