首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The present work examines the relationship between the antimicrobial activity of novel arginine-based cationic surfactants and the physicochemical process involved in the perturbation of the cell membrane. To this end, the interaction of these surfactants with two biomembrane models, namely, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) multilamellar lipid vesicles (MLVs) and monolayers of DPPC, 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] sodium salt (DPPG), and Escherichia coli total lipid extract, was investigated. For the sake of comparison, this study included two commercial antimicrobial agents, hexadecyltrimethylammonium bromide and chlorhexidine dihydrochloride. Changes in the thermotropic phase transition parameters of DPPC MLVs in the presence of the compounds were studied by differential scanning calorimetry analysis. The results show that variations in both the transition temperature (Tm) and the transition width at half-height of the heat absorption peak (deltaT1/2) were consistent with the antimicrobial activity of the compounds. Penetration kinetics and compression isotherm studies performed with DPPC, DPPG, and E. coli total lipid extract monolayers indicated that both steric hindrance effects and electrostatic forces explained the antimicrobial agent-lipid interaction. Overall, in DPPC monolayers single-chain surfactants had the highest penetration capacity, whereas gemini surfactants were the most active in DPPG systems. The compression isotherms showed an expansion of the monolayers compared with that of pure lipids, indicating an insertion of the compounds into the lipid molecules. Owing to their cationic character, they are incorporated better into the negatively charged DPPG than into zwitterionic DPPC lipid monolayers.  相似文献   

2.
Interaction of liposomes (phospholipid vesicles) with human erythrocytes was studied by means of a spectroscopic method. Transfer of hemoglobin between liposomes and erythrocytes was observed. This transfer was mediated by a migration of band 3 proteins. In this case, a transfer of band 4.5 also was observed by means of electrophoresis. An interaction of lipid monomers from the liposomes with the erythrocyte membranes seemed to be closely correlated to the transfer of these proteins. It was presumed that this interaction induced some changes in the molecular organization of the cell membranes around band 3, resulting in release of the proteins from the erythrocyte membranes.  相似文献   

3.
The reduction of copper(II) ions in an aqueous dispersion of positively charged liposomes results in the formation of stable sols of a complex of copper nanoparticles with the surface of liposomes. The mean size (7 nm) and the narrow size distribution of metal nanoparticles are similar to those observed in the case of metal sol formation in polymer solutions. The labile character of bonds between nanoparticles and liposomes makes the latter able to compete with a linear polymer (poly-N-vinylpyrrolidone) in binding to nanoparticles. This ability is manifested in the independence of an almost even distribution of nanoparticles between these competitors from the sol preparation mode in a system including both poly(N-vinylpyrrolidone) macromolecules and liposomes. The evenness of the distribution indicates an approximately identical stability of complexes of copper nanoparticles with both competitors. The replacement of liposomes with poly(N-vinylpyrrolidone) macromolecules in the protective shields of nanoparticles is accompanied by the detachment of the nanoparticles from the surface, thereby allowing the measurement of their size and size distribution in the case where such measurements are impossible because of a high density of nanoparticles on the liposome surface.  相似文献   

4.
The acid-base properties of Zn-hematoporphyrin IX (ZnHP) and Zn-mesoporphyrin IX (ZnMP) and the effect of pH on their binding to liposomes have been studied. The ionization constants for the two carboxylate groups of ZnHP were calculated by principal component analysis and are 5.7 +/- 0.1 and 6.9 +/- 0.05. The neutral species and the mono- and dianionic forms all bind to liposomes, but a strong pH effect on the binding constant was observed for both the investigated compounds. We also observed a decrease in the binding of the two anionic species when the membranes carried a negative charge. These results indicate that the porphyrins partition into the membrane with their carboxylic moieties near the lipid-water interface so that their deprotonation, leading to a charged molecule, does not prevent the insertion of the tetrapyrrole ring into the lipid environment of neutral liposomes.  相似文献   

5.
The interaction between liposomes modified with a particular peptide sequence and Bacillus subtilis spores was experimentally observed as (1) an increase in the average diameter of spore-related particles, and (2) the formation of dense and structured shells around the spores at higher concentrations of liposomes.  相似文献   

6.
The interaction of recombinant human interferon-gamma (IFN) with egg phosphatidylcholine liposomes was studied. IFN which binds to liposomes was dependent on the liposomal charge and pH, and a preferential binding was observed in negatively charged liposomes at pH 7.4-10. Electron-microscopic observation showed that the increased liposomal turbidity induced by IFN was due to liposomal aggregation, and the increased turbidity could be decreased by the addition of NaCl. Thus, ionic binding may participate in this interaction. But, when the incubation time was longer, the liposomal aggregation was not decreased by the addition of NaCl, and the leakage of the entrapped marker, calcein, was observed. Electron-microscopic analysis showed that this leakage resulted from the morphological change of liposomes. From these findings, ionic binding may participate in the interaction between IFN and liposomes and then develop a morphological change in negatively charged liposomes under the neutral pH condition.  相似文献   

7.
Transfection of cells by DNA (for the purposes of gene therapy) can be effectively engineered through the use of cationic lipid/DNA "lipoplexes", although the transfection efficiency of these lipoplexes is sensitive to the neutral "helper" lipid included. Here, neutron reflectivity has been used to investigate the role of the helper lipid present during the interaction of cationic lipid vesicles with model cell membranes. Dimethyldioctadecylammonium bromide (DDAB) vesicles were formed with two different helper lipids, 1,2-dioleoyl-sn-glycero-3-phosphatidylethanolamine (DOPE) and cholesterol, and the interaction of these vesicles with a supported phospholipid bilayer was determined. DOPE-containing vesicles were found to interact faster with the membrane than those containing cholesterol, and vesicles containing either of the neutral helper lipids were found to interact faster than when DDAB alone was present. The interaction between the vesicles and the membrane was characterized by an exchange of lipid between the membrane and the lipid aggregates in solution; the deposition of vesicle bilayers on the surface of the membrane was not apparent.  相似文献   

8.
Although a lipid bilayer is only several nanometers in thickness, giant liposomes (GLs) make it possible to observe the dynamic features of individual membrane vesicles in real time with optical microscopy. Recent progress in GL preparation methods allows one to make reproducible image analyses of essential characteristics of membrane vesicles including fusion, division and poration processes. As a model of living cells, morphological changes of GLs that encapsulate cytoskeletal filaments such as microtubules or F-actin can be investigated directly. Applications of GLs based on the advantages of their large size is described using patch clamps, injection, mechanical transducer and so on.  相似文献   

9.
The aim of this study was to compare the adsorption of various organic drugs and a well-studied surfactant. The organic drugs used were promethazine chloride [10-(2-dimethylammonium) propylfenothiazine chloride] and buformin hydrochloride (1-butylbiguanidine chloride). The surfactant was benzalkonium chloride (N-tridecyl-N-benzyl-N,N-dimethylammonium chloride). Different amounts of drug solutions were added to montmorillonite suspensions, either separately (simple system) or in combination (competitive system) under the same conditions, and the organocomplexes formed were investigated. The organic molecule with the short alkyl chain adsorbed to yield monolayer coverage, whereas the aromatic molecule and the surfactant formed a pseudotrimolecular arrangement. In the competitive system, the larger organic molecules (having the same charge) displaced the smaller one from the interlayer space. The intercalation of molecules in the interlayer space was investigated by X-ray diffraction measurements. Received: 30 November 2000 Revised: 20 December 2001 Accepted: 26 October 2001  相似文献   

10.
Mucoadhesivity of water-soluble polymers is an important factor, when testing their suitability for controlled drug delivery systems. For this purpose, the interaction of new cationic cellulose polyelectrolytes with lyophilized mucin was investigated by means of turbidimetric titration, microscopy and measurement of zeta potential and particle size changes in the system. Results show that the cellulose derivatives interact with mucin. This interaction became stronger if cellulose macromolecules contained positively charged groups and an electrostatic interaction with the negatively charged mucin particles occurred. Under certain conditions flocculation of mucin particles by the cellulose polyelectrolyte was observed.  相似文献   

11.
The interaction of surface-active molecules with lipid bilayers is ubiquitous both in biological systems and also in several technological applications. Here we explore the interaction of ionic surfactants with liposomes whose composition mimics the ocular epithelia. In this study, liposomes with a composition mimicking ocular epithelia are loaded with calcein dye above the self-quenching concentration. The liposomes are then exposed to surfactants, and the rate of dye leaked from the liposomes due to the interaction of surfactants is measured. Both cationic and anionic surfactants at various concentrations and ionic strengths are explored. Results show that the liposome bilayer permeability to the dye increases on exposure to the surfactants, leading to the release of the dye trapped in the core. However, the dye release stops after a finite time, suggesting a transient increase in permeability followed by healing. The leakage profiles exhibit two different timescales for the cationic surfactant but only one timescale for the anionic surfactant. The total dye leakage increases with surfactant concentration, and at a given concentration, the dye leakage is significantly higher for the cationic surfactants. The timescale for the healing decreases with increasing surfactant concentration, and increasing ionic strength increases the dye leakage for the anionic surfactant. These results show that the surfactant binding to the lipid bilayer increases the permeability while the bilayers heal likely because of the surfactant jump from the outer to the inner leaflet and/or rearrangement into tighter aggregates.  相似文献   

12.
Small interfering RNA (siRNA) inducing gene silencing has great potential to treat many human diseases. To ensure effective siRNA delivery, it must be complexed with an appropriate vector, generally nanoparticles. The nanoparticulate complex requires an optimal physiochemical characterization and the complexation efficiency has to be precisely determined. The methods usually used to measure complexation in gel electrophoresis and RiboGreen® fluorescence‐based assay. However, those approaches are not automated and present some drawbacks such as the low throughput and the use of carcinogenic reagents. The aim of this study is to develop a new simple and fast method to accurately quantify the complexation efficiency. In this study, capillary electrophoresis (CE) was used to determine the siRNA complexation with cationic liposomes. The short‐end injection mode applied enabled siRNA detection in less than 5 min. Moreover, the CE technique offers many advantages compared with the other classical methods. It is automated, does not require sample preparation and expensive reagents. Moreover, no mutagenic risk is associated with the CE approach since no carcinogenic product is used. Finally, this methodology can also be extended for the characterization of other types of nanoparticles encapsulating siRNA, such as cationic polymeric nanoparticles.  相似文献   

13.
Most Gram-negative bacteria are susceptible to polymyxin B (PxB), and development of resistance to this cationic lipopeptide is very rare. PxB mechanism of action involves interaction with both the outer membrane (OM) and the inner membrane (IM) of bacteria. For the design of new antibiotics based on the structure of PxB and with improved therapeutic indexes, it is essential to establish the key features of PxB that are important for activity. We have used an approach based on mimicking the outer layers of the OM and the IM of Gram-negative bacteria using monolayers of lipopolysaccharide (LPS) or anionic 1-palmitoyl-2-oleoylglycero-sn-3-phosphoglycerol (POPG), respectively, and using a combination of penetration assay, analysis of pressure/area curves, and Brewster angle microscopy to monitor surface morphology changes. Synthetic analogue sp-B maintains the basic structural characteristics of the natural compound and interacts with the OM and the IM in a similar way. Analogue sp-C, with a mutation of the sequence [d-Phe6-Leu7] into [d-Phe6-Dab7], shows that this hydrophobic domain is involved in LPS binding. The significant role of the positive charges is demonstrated with sp-Dap analogue, where l-alpha,gamma-diaminobutyric acid residues Dab1 and Dab8 are replaced by l-alpha,gamma-diaminopropionic acid (Dap), resulting in lower degrees of insertion in both LPS and PG monolayers. The importance of the N-terminal acyl chain is demonstrated with polymyxin B nonapeptide (PxB-np). PxB-np shows lower affinity for LPS compared to PxB, sp-B, or sp-C, but it does not insert into PG monolayers, although it binds superficially to the anionic film. Since PxB microbial killing appears to be mediated by osmotic instability due to OM-IM phospholipid exchange, the ability of the different peptides to induce membrane-membrane lipid exchange has been studied by use of phospholipid unilamellar vesicles. Results indicate that cationic amphipathicity determines peptide activity.  相似文献   

14.
The interaction of acidic capsular polysaccharide isolated fromKlebsiella K26 with cationic dyes pinacyanol chloride, acridine orange and phenosafranin has been studied by spectral measurements. The polymer induces metachromasy in pinacyanol chloride dye, indicating a blue shift in the visibly absorption spectrum of the dye from 600 to 500 nm. The stoichiometry of polymer/dye in the metachromatic compound, thermodynamic parameters of interaction, and effects of different cosolvents on the stability of the complex have been studied. Spectrophotometric and spectrofluorometric properties of the interaction between the polymer and all three dyes are presented. The chromotropic property of the polymer has been established.  相似文献   

15.
The interaction of a cationic water-soluble porphyrin, 5,10,15,20-tetrakis [4-(3-pyridiniumpropoxy)phenyl]porphyrin tetrakisbromide (TPPOC3Py), with anionic surfactant, sodium dodecyl sulfate (SDS), in aqueous solution has been studied by means of UV-vis, (1)H NMR, fluorescence, circular dichroism (CD) spectra and dynamic laser light scattering (DLLS), and it reveals that TPPOC3Py forms porphyrin-surfactant complexes (aggregates), including ordered structures J- and H-aggregates, induced by association with surfactant monomers below the SDS critical micelle concentration (cmc), and forms micellized monomer upon the cmc, respectively. The position of TPPOC3Py in the micelle is determined, which is not in the micelle core instead of intercalated among the SDS chains, most likely with the pyridinium group extending into the polar headgroup region of the micelle.  相似文献   

16.
The thermodynamically stable microemulsion and lamellar phases in the didodecyldimethylammonium bromide/water/n-decane ternary system were explored in the presence of NaBr to gain information on sodium ion-interface interactions. Experimental results, obtained by different NMR techniques, strongly suggest accumulation of sodium ions at the cationic interface. This apparently counterintuitive result is explained by invoking the dispersion potential experienced by the ions near the interface. A mechanism is proposed that can account for the dramatic shrinkage of the microemulsion phase region when an electrolyte is added.  相似文献   

17.
In the present study, mixed liposomes of dihexadecyl phosphate sodium salt:phosphatidylcholine:cholesterol at a 1:19:9.5 molar ratio were allowed to interact with poly-L-arginine at temperatures below and above the main phase transition of the liposomal membrane. The interaction led to the formation of aggregates, which gradually increased in size and eventually precipitated. It was, however, possible, during the initial stage of the experiments, when the ratio of guanidinium group relative to phosphate was smaller than ca. 40%, to determine their size and charge and observe their morphology in aqueous dispersion. Fluorescence experiments established that the liposomes are not ruptured during their interaction with poly-L-arginine. Instead, they are attached at the polypeptide chain through the guanidinium-phosphate complementary pair. Fluorescence quenching experiments indicated that the poly-L-arginine chain is accessible for interaction with iodides dissolved in the aqueous phase when the temperature of the liposomal dispersion is below the main lipid phase transition. It is, however, partitioned in the interior of the membrane at temperatures exceeding this main lipid phase transition.  相似文献   

18.
Systematic analyses of the interaction between liposomes and cells were examined. Liposomes were found to affect the growth of mouse NIH 3T3 cells depending upon their size, net charge, and cholesterol content. Among the charged compounds, stearylamine was the most inhibitory and showed complete inhibition of cell growth at 100 microM. The cholesterol-rich and small unilamellar vesicles were more suppressive compared to the cholesterol-poor and multilamellar ones, respectively. The binding assay of liposomes to the cells showed a positive correlation between liposome binding and the extent of growth inhibition. Suppression of liposome uptake by inhibitors of the cytoskeletal system and energy metabolism were suggestive of an endocytotic mechanism for the cellular uptake of liposomes. The growth inhibitory effect seemed secondary to the intracellular uptake of liposomes, and peroxidation of incorporated lipids would lead to cellular damage. Therefore, it is highly recommended that potential growth inhibitory effects associated with the particular composition and other properties of liposomes should be carefully assessed in any human studies, especially for long-term use.  相似文献   

19.
The interaction of several mono-, di-, and trivalent anions with cationic polyelectrolytes having different contents in N,N-dimethyl-2-hydroxypropylen ammonium chloride units (polymer A) or tertiary amine N-atoms and PEG (polymer PEGA) in the main chain was studied by viscosimetric and conductometric measurements. Both methods have shown a stronger interaction for tri- and bi- than for univalent counterions. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 2571–2581, 1997  相似文献   

20.
We have examined the polymer-surfactant interaction in mixed solutions of the cationic surfactants, i.e., dodecyltrimethylammonium chloride, dodecyltrimethylammonium bromide, tetradecyltrimethylammonium bromide, hexadecyltrimethylammonium bromide, tetradecyltriphenylphosphonium bromide, and tetradecylpyridinium bromide and a semiflexible anionic polyelectrolyte carboxymethylcellulose in water and aqueous salt solutions by various techniques: tensiometry, viscosimetry or ion-selective electrode method, and dynamic light scattering. We have investigated the effect of varying surfactant chain length, head group size, counterion, and ionic strength on the critical aggregation concentration (CAC) of mixed polymer surfactant systems and the collapse of the polymer molecule under different solution conditions. The CAC decreases with increasing alkyl chain length. Above a certain surfactant concentration, mixed aggregates start growing until their macroscopic phase separation. The growth is more rapid with greater surfactant tail length and with increasing head group size. This is attributed in both cases to the increasing hydrophobic interaction between polymer and surfactant. Among surfactants with monovalent halide counterions, iodide induces the strongest binding, reflected by the onset of growth of the mixed aggregates at low surfactant concentration. This is perhaps related to the decreasing hydration of the counterion from chloride to iodide. The surfactant concentration at which the viscosity of the solution starts to decrease sharply is smaller than the CAC, and probably reflects polymer chain shrinkage due to noncooperative binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号