首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study focuses on the physicochemical characterization of lipid materials useful for the production of the so-called solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC). The chosen lipids were Dynasan®114 (glyceril trimyristate) and Dynasan®118 (glyceril tristearate) as solid lipids (SL), melting temperature above 80 °C, and Miglyol®812 (caprylic/capric triglyceride) and Miglyol®840 (propylene glycol dicaprylate/dicaprate) as liquid lipids (LL), crystallizing below ?15 °C. Raw lipids (pure or SL:LL mixtures) were analyzed by differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD), and Polarized Light Microscopy (PLM), before and after tempering at 80 °C for 1 h. The selected SL:LL combination was 70% (Dynasan®114 and 118) and 30% (Miglyol®812 and 840) for the production of SLN and NLC by high-pressure homogenization (HPH), respectively. Particles with a mean size of 200 nm (polydispersity index <0.329) and zeta potential of ?15 mV were obtained, and their long-term stability was confirmed for 3 months of storage at 7 °C.  相似文献   

2.
Melt‐crystallized, low molecular weight poly(L ‐lactic acid) (PLLA) consisting of α crystals was uniaxially drawn by solid‐state extrusion at an extrusion temperature (Text) of 130–170 °C. A series of extrusion‐drawn samples were prepared at an optimum Text value of 170 °C, slightly below the melting temperature (Tm) of α crystals (~180 °C). The drawn products were characterized by deformation flow profiles, differential scanning calorimetry (DSC) melting thermograms, wide‐angle X‐ray scattering (WAXD), and small‐angle X‐ray scattering as a function of the extrusion draw ratio (EDR). The deformation mode in the solid‐state extrusion of semicrystalline PLLA was more variable and complex than that in the extensional deformation expected in tensile drawing, which generally gave a mixture of α and β crystals. The deformation profile was extensional at a low EDR and transformed to a parabolic shear pattern at a higher EDR. At a given EDR, the central portion of an extrudate showed extensional deformation and the shear component became progressively more significant, moving from the center to the surface region. The WAXD intensities of the (0010)α and (003)β reflections on the meridian as well as the DSC melting thermograms showed that the crystal transformation from the initial α form to the oriented β form proceeded rapidly with increasing EDR at an EDR greater than 4. Furthermore, WAXD showed that the crystal transformation proceeded slightly more rapidly at the sheath region than at the core region. This fact, combined with the deformation profiles (shear at the sheath and extensional at the core), indicated that the crystal transformation was promoted by shear deformation under a high pressure rather than by extensional deformation. Thus, a highly oriented rod consisting of only β crystals was obtained by solid‐state extrusion of melt‐crystallized, low molecular weight PLLA slightly below Tm. The structure and properties of the α‐ and β‐form crystals were also studied. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 95–104, 2002  相似文献   

3.
李良彬 《高分子科学》2014,32(9):1224-1233
In this study, recovery processes of isotactic polypropylene(iPP) melted spherulites at 135 °C after melting at higher temperatures(170 °C–176 °C) were investigated with polarized optical microscopy and Fourier transform infrared spectroscopy. The recovery temperature was fixed to exclude the interference from heterogeneous nuclei. After melting at temperatures between 170 °C and 174 °C, the melted spherulite could recover back to the origin spherulite at low temperatures. Interestingly, a distinct infrared spectrum from iPP melt and crystal was observed in the early stage of recovery process after melting at low temperatures, where only IR bands resulting from short helices with 12 monomers or less can be seen, which indicates that the presence of crystal residues is not the necessary condition for the polymer memory effect. Avrami analysis further indicated that crystallization mainly took place in melted lamellae. After melting at higher temperatures, melted spherulite cannot recover. Based on above findings, it is proposed that the memory effect can be mainly ascribed to melted lamellae, during which crystalline order is lost but conformational order still exists. These conformational ordered segments formed aggregates, which can play as nucleation precursors at low temperatures.  相似文献   

4.
Radiation-induced solid state polymerization of 1,2-cyclohexene oxide has been investigated. By the differential thermal analysis and x-ray diffraction analysis, it was found that this compound has a phase transition point at ?81°C and behaves as a plastic crystal in the temperature range from ?81°C to ?36°C (melting point). The in-source polymerization proceeded not only in the plastic crystalline state but also in the ordinary crystalline state at temperatures below the phase transition point. The overall rate of polymerization and the rate of chain transfer to monomer in the plastic crystalline state were larger than those in the ordinary crystalline state by a factor of about forty, but the kinetic mechanisms were identical, i.e., the termination mechanisms were unimolecular in both solid states. In contrast, the kinetic mechanisms in the plastic crystalline state and in the liquid state were different. From these observations, the effects of molecular motion and molecular arrangement on the polymerizations of 1,2-cyclohexene oxide in the three phases were discussed.  相似文献   

5.
Filmy solid dispersion of terfenadine (TFD), fenofibrate (FFB), and carbamazepine (CBZ) and methacrylic acid methyl methacrylate copolymer (Eudragit®) was prepared by evaporating their solution. Raman and IR measurements for the filmy samples were performed. Concentration profile of TFD, FFB, and CBZ in solid dispersions was evaluated by their characteristic peaks, and then their diffusion rate constants were calculated. The start point of the crystallization peak under isothermal condition was determined by XRD–DSC. Viscoelastic character of Eudragit® was evaluated by dynamic mechanical analysis (DMA). The distribution map of drugs in their solid dispersions showed the diffusion state of drugs during storage. The concentration profile of TFD, FFB, and CBZ in the solid dispersion was calculated from obtained mapping data. The diffusion rate constant of both drug in Eudragit® EPO was higher than that in Eudragit® RLPO. The induction period of crystallization from amorphous CBZ was gradually delayed with increasing amounts of Eudragit®. The IR peak due to C=O was shifted to higher wave number; it suggested that there were some molecular interactions between CBZ and Eudragit®. From the results of the change in the interaction of drug-Eudragit®, it may be concluded that the diffusivity of drug molecule in polymer closely related to the delay of the induction period of crystallization of amorphous. DMA measurement clarified the difference in the viscosity of Eudragit® having different functional groups and molecular mass. These results suggested that the retardation of crystallization by Eudragit® could be related to the sample viscosity.  相似文献   

6.
A film of nascent powder of polytetrafluoroethylene (PTFE), compacted below the ambient melting temperature (Tm, 335 °C), was drawn by two‐stage draw techniques consisting of a first‐stage solid‐state coextrusion followed by a second‐stage solid‐state coextrusion or tensile draw. Although the ductility of extrudates was lost for the second‐stage tensile draw at temperatures above 150 °C due to the rapid decrease in strength, as previously reported, the ductility of extrudates increased with temperature even above 150 °C when the second‐stage draw was made by solid‐state coextrusion, reflecting the different deformation flow fields in a free space for the former and in an extrusion die for the latter. Thus, a powder film initially coextruded to a low extrusion draw ratio (EDR) of 6–20 at 325 °C was further drawn by coextrusion to EDRs up to ~?400 at 325–340 °C, near the Tm. Extremely high chain orientation (fc = 0.998 ± 0.001), crystallinity (96.5 ± 0.5)%, and tensile modulus (115 ± 5 GPa at 24 °C, corresponding to 73% of the X‐ray crystal modulus) were achieved at high EDRs. Despite such a morphological perfection and a high modulus, the tensile strength of a superdrawn tape, 0.48 ± 0.03 GPa, was significantly low when compared with those (1.4–2.3 GPa) previously reported by tensile drawing above the Tm. Such a low strength of a superdrawn, high‐modulus PTFE tape was ascribed to the low intermolecular interaction of PTFE and the lack of intercrystalline links along the fiber axis, reflecting the initial chain‐extended morphology of the nascent powder combined with the fairly high chain mobility associated with the crystal/crystal transitions at around room temperature. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3369–3377, 2006  相似文献   

7.
The crystalline structure of polyamide‐12 (PA12) was studied by solid‐state 13C nuclear magnetic resonance (NMR) as well as by synchrotron wide‐ and small‐angle X‐ray scattering (WAXS and SAXS). Isotropic and oriented PA12 showed different NMR spectra ascribed to γ‐ and γ′‐crystalline modifications, respectively. On the basis of the position of the first diffraction peak, the isotropic γ‐form and the oriented γ′‐form were shown to be with hexagonal crystalline lattice at room temperature. When heated, the two PA12 polymorphs demonstrated different behaviors. Above 140 °C, the isotropic γ‐PA12 partially transformed into α‐modification. No such transition was observed with the oriented γ′‐PA12 phase even after annealing at temperatures close to melting. A γ′–γ transition was observed here only after isotropization by melting point. Various structural parameters were extracted from the WAXS and SAXS patterns and analyzed as a function of temperature and orientation: the degree of crystallinity, the d‐spacings, the Bragg's long spacings, the average thicknesses of the crystalline (lc) and amorphous (la) phases, and the linear crystallinity xcl within the lamellar stacks. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 3720–3733, 2005  相似文献   

8.
Summary: PTFE/PES composites were prepared by precipitation of Radel A® into a PTFE latex containing nanoparticles with average diameters of 48 nm and spherical shape. Several samples were prepared by varying the relative ratio between the Radel A® and PTFE content. The combination of SEM and AFM analysis indicates that the precipitation of Radel A in the presence of PTFE leads mainly, if not exclusively, to a bimodal mixture of the two homoparticles. The fractionated crystallization behaviour of these samples is revealing of the PTFE dispersion degree within the Radel A® matrix. When the PTFE amount is lower than 2%, a perfect PTFE nanoparticle dispersion is obtained. When the amount of PTFE is comprised between 5 and 30%, larger PTFE clusters are obtained that, after melting, coalesce and crystallize at higher temperatures depending on the crystallization propensity of their individual heterogeneous nuclei. Finally, in case of samples 40%, only one crystallization exotherm is observed at 310 °C indicating the formation of very large clusters that after melting coalesce into wide domains.  相似文献   

9.
Influences of dry heating, wet heating, and extrusion on the degradation of DNA and protein from transgenic soybean meal (TSM) were analyzed using qualitative PCR, quantitative real-time PCR (qPCR), indirect enzyme-linked immunosorbent assay (iELISA), and Western blot. The 414-bp Lectin gene was thoroughly degraded after dry heating between 75 and 90 °C for 30 min, wet heating, and extrusion at 165 °C with 39 % moisture content. The 483-bp CP4-EPSPS gene was not detected after dry heating, wet heating, and extrusion at 120 °C with 39 % moisture content. The degradation ratios of both Lectin and CP4-EPSPS genes increased from 0.4 to 92.1 % and 6.1 to 84.0 % as temperatures rose from 90 to 165 °C. iELISA results of the extruded TSM showed that the CP4-EPSPS protein content was reduced from 4.19 to 0.54 % as temperatures rose from 90 to 150 °C and was not detectable at 165 °C. Western blot results also showed the degradation of CP4-CPSPS protein after extrusion. Our results showed that temperature played an essential role in DNA and protein degradation, and the content of genetically modified organism (GMO) products may be changed after processing and could not reflect the initial content of the products.  相似文献   

10.
A commercial main-chain liquid-crystalline, naphthalene-based polyesteramide, was studied by three experimental techniques: extrusion capillary rheometry, dynamic viscoelasticity, and differential scanning calorimetry (DSC). From capillary rheometry a maximum at 360°C was observed in viscosity temperature curve. This result is compared with literature data for other thermotropics, and the possibility of a transition from a nematic to an isotropic phase is considered. The results obtained from dynamic viscoelasticity and DSC agree, and reveal the existence of a glass transition at 128°C (by DSC) and 137–147°C (by viscoelastic measurements, depending on frequency) as well as melting at 282°C. Annealing below 230°C produces two types of crystals, whereas annealing above this temperature gives rise to only one type of crystal, the melting temperature of which can be, depending on annealing time, as high as 340°C. The results are compiled in a phase diagram with six regions, four of them corresponding to the solid state, one to a liquid mesophase, and one to an isotropic phase.  相似文献   

11.
The polymorphous crystallization and multiple melting behavior of poly(l-lactic acid) (PLLA) with an optical purity of 92 % were investigated after isothermally crystallized from the melt state by wide-angle X-ray diffraction and differential scanning calorimetry. Owing to the low optical purity, it was found that the disordered (α′) and ordered (α) crystalline phases of PLLA were formed in the samples crystallized at lower (<95 °C) and higher (≥95 °C) temperatures, respectively. The melting behavior of PLLA is different in three regions of crystallization temperature (T c) divided into Region I (T c < 95 °C), Region II (95 °C ≤ T c < 120 °C), and Region III (T c ≥ 120 °C). In Region I, an exothermic peak was observed between the low-temperature and high-temperature endothermic peaks, which results from the solid–solid phase transition of α′-form crystal to α one. In Region II, the double-melting peaks can be mainly ascribed to the melting–recrystallization–remelting of less stable α crystals. In Region III, the single endotherm shows that the α crystals formed at higher temperatures are stable enough and melt directly without the recrystallization process during heating.  相似文献   

12.
Lipid freezing in dilute sonicated vesicular dispersions was studied using differential scanning calorimetry (DSC) and 1H NMR. For charged, anionic, or cationic lipids, approximately half of the lipids remain in a fluid state when cooled 20 degrees C below the main chain melting temperature. With a zwitterionic phospholipid, on the other hand, essentially no supercooling of the liquid state was observed. The observations are analyzed in terms of the nucleation and growth of flat solid domains in originally fluid spherical vesicles. As the solid domains grow, the remaining fluid domain is deformed, resulting in a curvature stress. Depending on the vesicle size and the bilayer bending rigidity, the solid domain growth may terminate as the gain in cohesive free energy is balanced by the curvature stress of the remaining fluid domain. It is argued that high bending rigidities are required for having a significant supercooling, which is why it is only observed for charged lipids.  相似文献   

13.
Polymorphic crystals and complex multiple melting behavior in an aliphatic biodegradable polyester, poly(butylene adipate) (PBA), were thoroughly examined by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). Further clarification on mechanisms of multiple melting peaks related to polymorphic crystal forms in PBA was attempted. More stable α‐form crystal is normally favored for crystallization from melt at higher temperatures (31–35 °C), or upon slow cooling from the melt; while the β‐form is the favored species for crystallization at low temperatures (25–28 °C). We further proved that PBA crystallization could also result in all α‐form even at low temperatures (25–28 °C) if it crystallized with the presence of prior α‐form nuclei. PBA packed with both crystal forms could display as many as four melting peaks (P1 ? P4, in ascending temperature order). However, PBA initially containing only the α‐crystal exhibited dual melting peaks of P1 and P3, which are attributed to dual lamellar distributions of the α‐crystal. By contrast, PBA initially containing only the β‐crystal could also exhibit dual melting peaks (P2 and P4) upon scanning. While P2 is clearly associated with melting of the initial β‐crystal, the fourth melting peak (P4), appearing rather broad, was determined to be associated with superimposed thermal events of crystal transformation from β‐ to α‐crystal and final re‐melting of the new re‐organized α‐crystal. Crystal transformation from one to the other or vice versa, lamellae thickening, annealing at molten state, and influence on crystal polymorphism in PBA were analyzed. Relationships and mechanisms of dual peaks for isolate α‐ or β‐crystals in PBA are discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1662–1672, 2005  相似文献   

14.
A study has been conducted on the solid-state extrusion of three semicrystalline polymers:poly-propylene (PP), poly(vinylidene fluoride) (PVDF), and high-density polyethylene (HDPE). HDPE has been extruded in continuous lengths with area reductions up to 25× at temperatures substantially below the melting region. Such extrusion has been identified as a solid-state process, since measurements of the temperature of the polymer during extrusion indicate the absence of significant heating due to deformation. In contrast, continuous lengths of PP and PVDF could not be obtained substantially below their melting temperatures, indicating that crystallization during extrusion is an important process for these polymers. Under severe extrusion conditions (low temperatures, high area reductions. etc.), all three polymers failed within the tapered region of the extrusion die. Two modes of failure have been identified, brittle fracture and, surprisingly, necking. Grid-line distortion patterns and a highly simplified upper-bound plasticity analysis both indicate that shear deformations are a major factor during high-stress extrusion.  相似文献   

15.
Molecular dynamics simulations in conjunction with MEAM potential models have been used to study the melting and freezing behavior and structural properties of both supported and unsupported Au nanoclusters within a size range of 2 to 5 nm. In contrast to results from previous simulations regarding the melting of free Au nanoclusters, we observed a structural transformation from the initial FCC configuration to an icosahedral structure at elevated temperatures followed by a transition to a quasimolten state in the vicinity of the melting point. During the freezing of Au liquid clusters, the quasimolten state reappeared in the vicinity of the freezing point, playing the role of a transitional region between the liquid and solid phases. In essence, the melting and freezing processes involved the same structural changes which may suggest that the formation of icosahedral structures at high temperatures is intrinsic to the thermodynamics of the clusters, rather than reflecting a kinetic phenomenon. When Au nanoclusters were deposited on a silica surface, they transformed into icosahedral structures at high temperatures, slightly deformed due to stress arising from the Au-silica interface. Unlike free Au nanoclusters, an icosahedral solid-liquid coexistence state was found in the vicinity of the melting point, where the cluster consisted of coexisting solid and liquid fractions but retained an icosahedral shape at all times. These results demonstrated that the structural stability in the structures of small Au nanoclusters can be enhanced through interaction with the substrate. Supported Au nanoclusters demonstrated a structural transformation from decahedral to icosahedral motifs during Au island growth, in contrast to the predictions of the minimum-energy growth sequence: icosahedral structures appear first at very small cluster sizes, followed by decahedral structures, and finally FCC structures recovered at very large cluster sizes. The simulations also showed that island shapes are strongly influenced by the substrate, more specifically, the structural characteristic of a Au island is not only a function of size, but also depends on the contact area with the surface, which is controlled by the wetting of the cluster to the substrate.  相似文献   

16.
Thermal storage cotton possessing solid–solid phase change properties was prepared by direct grafting of polyethylene glycol (PEG) on cotton fiber/cloth. Attempt has been made to characterize intermediates so that desired grafting could be obtained. The grafting was done by using urethane linkage and the grafted cotton was found to undergo solid–solid phase transition. The modified cotton was characterized by using Fourier transform infrared spectroscopy (FT-IR), 13C CPMAS, polarizing optical microscopy, differential scanning calorimetry (DSC) and thermogravimetry respectively. The DSC study revealed quite good storage effect of grafted cotton and the enthalpy of melting was found to be 55–59 J/g with a peak appearing at around 60 °C. During cooling scan, the crystallization peak appeared at around 38 °C. Further, thermogravimetric analysis confirmed good thermal stability up to 300 °C. Appreciable improvement of mechanical properties of cotton has been observed after grafting. The polarizing optical micrograph clearly showed change of morphology after grafting, i.e., the grafted PEG adhering to fiber surface.  相似文献   

17.

The preparation of Calcipotriol by solid lipid nanoparticles and the encapsulation of drugs in solid lipids are expected to obtain a new preparation with strong cutin permeability, slow release and targeting effect, so as to improve the local therapeutic effect of the drug and reduce the occurrence of skin irritation symptoms. In this work, Calcipotriol solid lipid nanoparticle (CPT-SLN) preparation methods are introduced and the stability of CPT-SLNs gel was evaluated by appearance, leakage rate and content. The performance was stable in a low-temperature environment of 4 °C for 40 days. There were no significant changes in appearance, and drug content and permeability can be controlled around 0.00469% and 0.26. However, it has poor stability under the storage conditions of 25 °C and 40 °C at room temperature. Therefore, the suitable conditions for the gel storage should be around 4 °C and sealed away from light. Pharmacodynamic experiments showed that CPT solid lipid nanoparticle gel was more effective than market-sale Calcipotriol ointment in the treatment of psoriasis. Further clinical tests have shown that CPT-SLNS can cure plaque psoriasis more effectively.

  相似文献   

18.
The morphological evolution of isolated individual single crystals deposited on solid substrates was investigated during annealing experiments using in situ and ex situ atomic force microscopy techniques. The crystal morphology changed during annealing at temperatures slightly above the original crystallization temperature of the crystals, far below their melting temperature. Evenly distributed cavities penetrated the crystals, and the number of cavities increased with a rising annealing temperature until the adjacent cavities coalesced. The thickness of the crystals increased during annealing at temperatures slightly above the crystallization temperature. Annealing experiments at fixed temperatures showed that the reorganization process (cavity formation and single‐crystal thickening) was fast. Depending on the annealing temperature, the final morphology was formed in seconds. This behavior suggests high chain mobility as well as a homogeneous solid‐state reorganization of the entire single crystal at low annealing temperatures. © 2001 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 39: 763–770, 2001  相似文献   

19.
Because of the health problems associated with trans fatty acids (TFAs) in hydrogenated oil, the objective of this research was to accelerate crystallization of the trans-free unhydrogenated palm oil (UPO) as a hydrogenated palm oil (HPO) substitute. Crystallization thermograms of UPO blended with icing sugar (1:1.5 mass ratio) from different initial heating temperatures were measured by differential scanning calorimetry (DSC), to study its effects on crystallization rate. DSC thermograms of UPO and HPO cooled from two melt states (the complete melting state 80 °C and the incomplete state 40 °C) were also compared. Crystallization rates from temperatures above the melting point (m.p.) were faster than those below the top limit of the m.p. The reason may be that a higher initial heating temperature induced a completely melted state and thus a larger driving force toward the solid phase. Raising the processing temperature to 80 °C, UPO may have a crystallization rate the same as, if not faster than, HPO. This study provides a new way to accelerate the crystallization of the trans-free UPO, making HPO a realistic substitute in the food industry.  相似文献   

20.
Poly-L-Lactide(PLLA) has been used as a bone fracture fixation material for several years. However, its mechanical properties are still not satisfied. To improve its mechanical properties, we examined the hydrostatic extrusion procedure on the PLLA rods made by Injection Molding process. The extrusion ratio was adjusted to 3, 6, 9, and 12. The molecular weight of the PLLA decreased from 260,000 to 200,000 after injection molding process, but it did not change during the hydrostatic extrusion procedure. The melting point of PLLA hydrostatic extrusion products were increased with the extrusion ratio, but the increment was not obviouse. Extrusion products having low extrusion ratio had α-form crystal in them, extrusion products having high extrusion ratio had both of α and β-form crystall in them. At extrusion temperature of 145°C, PLLA rods showed the best flowing trends in the pressure medium of PEG 400. Extrusion temperature is placed in the range of crystalline transition temperature and melting point of PLLA. At extrusion ratio 9∼12, the extrusion products showed the best mechanical properties. The highest bending strength of the extrusion product was over than 350MPa. It is far stronger than that of the human cortical bone (200MPa). SEM observations showed that the fiber structure began to appear at an extrusion ratio ER=3, and at the extrusion ratio ER=6, the chain axes of PLLA became aligned to the extrusion direction. The structure of extrusion products at the high extrusion ratio showed highly oriented fiber structure composed of micro-fibril. At high extrusion ratio tranformation from α-crystal to β-crystal was also observed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号