首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 844 毫秒
1.
The subject of this article is the Kac equation without cutoff. We first show that in the asymptotic of grazing collisions, the Kac equation can be approximated by a Fokker-Planck equation. The convergence is uniform in time and we give an explicit rate of convergence. Next, we replace the small collisions by a small diffusion term in order to approximate the solution of the Kac equation and study the resulting error. We finally build a system of stochastic particles undergoing collisions and diffusion, that we can easily simulate, which approximates the solution of the Kac equation without cutoff. We give some estimates on the rate of convergence.  相似文献   

2.
Xu C  Xie C  Mollenauer L 《Optics letters》2002,27(15):1303-1305
Timing jitter induced by soliton collisions is the leading nonlinear penalty in wavelength-division-multiplexed (WDM) dispersion-managed soliton transmission. Through analysis and numerical simulations we show that consecutive complete collisions together with partial collisions at the system output cause approximately the same amount of timing shift as partial collisions at the system input. We further show that the worst-case timing shift diverges logarithmically with the total number of WDM channels and linearly with the total transmission distance. However, the probability for such worst cases to occur decreases exponentially with channel spacing, total number of WDM channels, and transmission distance. We conclude that only the effects caused by adjacent channels need to be considered in a high channel count WDM system.  相似文献   

3.
Kaup DJ  Malomed BA  Yang J 《Optics letters》1998,23(20):1600-1602
We develop a perturbation theory to analytically calculate the effects of complete and incomplete interchannel collisions of Gaussian pulses in a wavelength-division-multiplexed system with strong dispersion management. We show that, for complete collisions, the collision-induced frequency shift of a Gaussian pulse is negligible, whereas its position shift is significant and can be found in a simple analytical form. For strong dispersion management we find that incomplete collisions can be neglected, whereas for dispersion management of moderate strength the contribution of the incomplete collisions can be significant. The analytical predictions are in satisfactory agreement with numerical results. We also give an estimate of the limit imposed on the transmission distance by such collisions.  相似文献   

4.
We study the global pressure of a one-dimensional polydisperse granular gases system for the first time, in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions, one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.  相似文献   

5.
We study the global pressure of a one-dimensional polydisperse granular gases system for the first time,in which the size distribution of particles has the fractal characteristic and the inhomogeneity is described by a fractal dimension D. The particles are driven by Gaussian white noise and subject to inelastic mutual collisions. We define the global pressure P of the system as the impulse transferred across a surface in a unit of time, which has two contributions,one from the translational motion of particles and the other from the collisions. Explicit expression for the global pressure in the steady state is derived. By molecular dynamics simulations, we investigate how the inelasticity of collisions and the inhomogeneity of the particles influence the global pressure. The simulation results indicate that the restitution coefficient e and the fractal dimension D have significant effect on the pressure.  相似文献   

6.
7.
System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process,i.e.a different system size corresponds to a different evolution process,and whether QGP is produced depends on the system size.We propose that the system size should be under the same level when comparing the measurements from different colliding nuclei.The equivalence of the peripheral collisions of Au-Au and the central collisions of smaller nuclei is studied using the Monte Carlo method.Comparing the transverse overlapping area of the colliding nuclei,the number of participant nucleons and the number of nucleon-nucleon binary collisions in various colliding nuclei,we give an estimate of the correspondence in system size.This is helpful in the experimental comparison of the measurements from different colliding nuclei.  相似文献   

8.
Charge-dependent correlations from both background and charge separation contribute to experimental observables in heavy-ion collisions. In this paper, we use stochastic hydrodynamics to study background charge asymmetry due to fluctuations. Using the rapidity-dependent correlation and a simple ansatz for particle distributions, we find a fluctuation-induced correlation to provide a type of background F -correlation. Experimental data for Au+Au collisions at $\sqrt{{s}_{\mathrm{NN}}}=200\,\mathrm{GeV}$ are compared. We also make predictions for F -correlations in isobar collisions. Combining this with our previous chiral magnetic effect results, we obtain δ -correlations for collisions in the three types of system. Computations from our model show an almost identical background with less than 2% difference for isobars, but roughly 10% difference for their charge separations. In combination with our earlier works, we provide a consistent method of calculating both the chiral magnetic effect and the charged background in the context of stochastic hydrodynamics.  相似文献   

9.
We describe the main features of resonances in scattering, determining the resonances in view of the theory of collisions in a two-body system, as well as the resonances emerging as a result of collisions in a few-body system. We analyze regularities in the emergence of such resonances and their characteristics. We discuss the results of calculations of the resonant processes occurring during collisions of electrons with diatomic molecules, in view of the quantum theory of scattering in a few-body system based on the Faddeev–Yakubovsky equations.  相似文献   

10.
Laser induced nonlinear absorption profiles in a three-level system have been recorded to study the effect of elastic collisions upon optical coherences. In our particular system, the signal is due to a pure double-quantum term, where we have separated the effect of phase-interrupting collisions from the effect of velocity-changing collisions. Experimental results show that the effect of velocity-changing collisions is very small, and that broadening of the signal is due to phase-interrupting collisions mainly. We are able to determine the increase of the decay rate of the coherent superposition (the “coherence”) of two levels of same parity [ 13/dp=(6.5±1) MHz/Torr] and an upper limit for the mean velocity change (ũ≲5m/s).  相似文献   

11.
We consider the motion of a heavy mass in an ideal gas in a semi-infinite system, with elastic collisions at the boundary. The motion is determined by elastic collisions. We prove in the Brownian motion limit the convergence of the position and velocity process of the heavy particle to a diffusion process in which velocity and position remain coupled.  相似文献   

12.
We present experiments on pattern formation in a Brownian system of oppositely charged colloids driven by an ac electric field. Using confocal laser scanning microscopy we observe complete segregation of the two particle species into bands perpendicular to a field of sufficient strength when the frequency is in a well-defined range. Because of its Brownian nature the system spontaneously returns to the equilibrium mixture after the field is turned off. We show that band formation is linked to the time scale associated with collisions between particles moving in opposite directions.  相似文献   

13.
We investigate the onset of diffusive behavior in polygonal channels for disks of finite size, modeling simple microporous membranes. It is well established that the point-particle case displays anomalous transport, because of slow correlation decay in the absence of defocusing collisions. We investigate which features of point-particle transport survive in the case of finite-sized particles (which undergo defocusing collisions). A similar question was investigated by Lansel, Porter, and Bunimovich [Chaos 16, 013129 (2006)], who found that certain integrals of motion and multiple ergodic components, characteristic of the point-particle case, remain in "mushroom"-like systems with few finite-sized particles. We quantify the time scales over which the transport of disks shows features typical of the point particles, or is driven toward diffusive behavior. In particular, we find that interparticle collisions drive the system toward diffusive behavior more strongly than defocusing boundary collisions. We illustrate how, and at what stage, typical thermodynamic behavior (consistent with kinetic theory) is observed, as particle numbers grow and mean free paths diminish. These results have both applied (e.g., nanotechnological) and theoretical interest.  相似文献   

14.
We show that the analysis of high-energy collisions provides an alternative, and sometimes advantageous, method of gathering information on a breakup system at threshold. We demonstrate the applicability of this approach by extracting the s-wave scattering length a0 for the collision of electrons by neutral atoms in metastable states from measurements of photo- and collisional detachment of electrons from negative ions and electron capture to continuum states of neutral projectiles in atomic ionization collisions. Finally, we discuss how to generalize these ideas to gather information about an N-body threshold behavior.Fax: +54 2944 445299, Phone: +54 2944 445234  相似文献   

15.
System size is more than a geometrical quantity in relativistic heavy ion collisions; it is closely related to evolution process, i.e. a different system size corresponds to a different evolution process, and whether QGP is produced depends on the system size. We propose that the system size should be under the same level when comparing the measurements from different colliding nuclei. The equivalence of the peripheral collisions of Au-Au and the central collisions of smaller nuclei is studied using the Monte Carlo method. Comparing the transverse overlapping area of the colliding nuclei, the number of participant nucleons and the number of nucleon-nucleon binary collisions in various colliding nuclei, we give an estimate of the correspondence in system size. This is helpful in the experimental comparison of the measurements from different colliding nuclei.  相似文献   

16.
We present Φ meson production in Cu+Cu and Au+Au collisions measured by the STAR experiment at RHIC.The hadronic decay mode Φ→K~+K~- is used in the analysis.The yields for Φ meson in Cu+Cu and Au+Au collisions at a given beam energy are scaled by the number of participant.The N_(part) normalized Φ meson yields in heavy ion collisions over those from p+p collisions are larger than 1 and increase with collision energy.These results suggest that the source of enhancement of strange hadrons is related to the formation of a dense medium in high energy heavy ion collisions and can not be only due to canonical suppression of their production in smaller systems.We also present STAR results on the Φ meson elliptic flow υ_2 from 2~(1/SNN)=200 GeV Cu+Cu at RHIC.The elliptic flow in Cu+Cu system that has the similar relative magnitude and qualitative features as that in Au+Au system.The observations imply the hot and dense matter with partonic collectivity has been formed in heavy ion collisions at RHIC.However,eccentrality normalized υ_2,υ_2/(n_qε_(part)) is lower for Cu+Cu than for Au+Au collisions at 200 GeV.So this might indicate thermalization has not been reached in 200 GeV Cu+Cu collisions.  相似文献   

17.
Two-particle angular correlation for charged particles emitted in Au + Au collisions at the center-of-mass of 200 MeV measured at RHIC energies revealed novel structures commonly referred to as a nearside ridge. The ridge phenomenon in relativistic A + A collisions is rooted probably in the initial conditions of the thermal evolution of the system. In this study we analyze the evolution of the bumping transverse structure of the energy density distribution caused by fluctuations of the initial density distributions that could lead to the ridge structures. We suppose that at very initial stage of collisions the typical one-event structure of the initial energy density profile can be presented as the set of longitudinal tubes, which are boost invariant in some space-rapidity region and are rather thin. These tubes have very high energy density comparing to smooth background density distribution. The transverse velocity and energy density profiles at different times of the evolution till the chemical freeze-out (at the temperature T = 165 MeV) will be reached by the system are calculated for sundry initial scenarios.  相似文献   

18.
Within the framework of a factorization model, we study the behaviour of nuclear modification factor in Au Au collisions at RHIC and Pb-Pb collisions at LHC. We find that the nuclear modification factor is inversely proportional to the radius of the quark-gluon plasma and is dominated by the surface emission of hard jets. We predict the nuclear modification factor R^LHC AA - 0.15 in central Pb-Pb collisions at LHC. The study shows that the factorization model can be used to describe the centrality dependence of nuclear modification factor of the high transverse momentum particles produced in heavy ion collisions at both RHIC and LHC.  相似文献   

19.
In order to calculate the cross sections of the muonic atom-nucleus collisions, we have proposed a precise numerical method, a non-adiabatic coupled-rearrangement-channel method with the use of the Jacobian coordinates for the three-body system in the whole space. The scattering boundary condition is correctly imposed along the coordinates; this method does not suffer from the well known defects of the method of adiabatic representation. We applied our method to the muonic atom-nucleus collisions for an incident c.m. energies of 0.001–100 eV.  相似文献   

20.
We propose a model of mobile agents to construct social networks, based on a system of moving particles by keeping track of the collisions during their permanence in the system. We reproduce not only the degree distribution, clustering coefficient, and shortest path length of a large database of empirical friendship networks recently collected, but also some features related with their community structure. The model is completely characterized by the collision rate, and above a critical collision rate we find the emergence of a giant cluster in the universality class of two-dimensional percolation. Moreover, we propose possible schemes to reproduce other networks of particular social contacts, namely, sexual contacts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号