首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
In this paper a thick hollow cylinder with finite length made of two dimensional functionally graded material (2D-FGM) subjected to transient thermal boundary conditions is considered. The volume fraction distribution of materials, geometry and thermal boundary conditions are assumed to be axisymmetric but not uniform along the axial direction. The finite element method with graded material properties within each element is used to model the structure and the Crank–Nicolson finite difference method is implemented to solve time dependent equations of the heat transfer problem. Two-dimensional heat conduction in the cylinder is considered and variation of temperature with time as well as temperature distribution through the cylinder are investigated. Effects of variation of material distribution in two radial and axial directions on the temperature distribution and time response are studied. The achieved results show that using two-dimensional FGM leads to a more flexible design so that transient temperature, maximum amplitude and uniformity of temperature distributions can be modified to achieve required specifications by selecting a suitable material distribution profile in two directions.  相似文献   

2.
Elastic analysis of a functionally graded thick-walled cylindrical pressure vessel is analytically studied in the present research. Gradation is considered for all mechanical properties along the thickness direction based on a power function. The constitutive relations are developed in the general cylindrical coordinate system for an axisymmetric pressurized cylinder. For simulation of these two deformation components, first order shear deformation theory is considered. The FG cylinder is subjected to longitudinally non-uniform pressure along the length of the cylinder. The present problem is applicable for simulation of non-uniform pressurized cylinder by fluids or gases.  相似文献   

3.
4.
In this article, transient heat conduction in a cylindrical shell of functionally graded material is studied by using analytical method. The shell is assumed to be in axisymmetry conditions. The material properties are considered to be nonlinear with a power law distribution through the thickness. The temperature distribution is derived analytically by using the Bessel functions. To verify the proposed method the obtained numerical results are compared with the published results. The comparisons of temperature distribution between various time and material properties are presented.  相似文献   

5.
Modern aerospace shuttles and craft are subjected to super high temperatures, that have variation in two or three directions, which need to introduce new materials that can stand with such applications. Therefore, in the present work a two-dimensional functionally graded materials, 2D-FGM, are introduced to withstand super high temperatures and to give more reduction in thermal stresses. The suitable functions that can represent volume fractions of the introduced 2D-FGM are proposed. Then the rules of mixture of the 2D-FGM are derived based on the volume fractions of the 2D-FGM and the rules of mixture of the conventional FGM. The introduced volume fractions and rules of mixture for 2D-FGM were used to calculate the thermal stresses in 2D-FGM plate. Comparison between 2D-FGM and conventional FGM was carried out and showed that 2D-FGM has high capability to reduce thermal stresses than the conventional FGM.  相似文献   

6.
For the thermoelastic dynamic axisymmetric problem of a finite orthotropic hollow cylinder, one comes closer to reality to involve the effect of axial strain than to consider the plane strain case only. However, additional mathematical difficulties should be encountered and a different solution procedure should be developed. By the separation of variables, the thermoelastic axisymmetric dynamic problem of an orthotropic hollow cylinder taking account of the axial strain is transformed to a Volterra integral equation of the second kind for a function of time, which can be solved efficiently and quickly by the interpolation method. The solutions of displacements and stresses are obtained. It is noted that the present method is suitable for an orthotropic hollow cylinder with an arbitrary thickness subjected to arbitrary axisymmetric thermal loads. Numerical comparison is made to show the effect of the axial strain on the displacements and stresses. The project supported by the National Natural Science Foundation of China (10172075) and China Postdoctoral Science Foundation (20040350712)  相似文献   

7.
Finite Element Method based on Rayleigh–Ritz energy formulation is applied to obtain the elastic behavior of functionally graded thick truncated cone. The cone has finite length, and it is subjected to axisymmetric hydrostatic internal pressure. The inner surface of the cone is pure ceramic and the outer surface is pure metal, and the material composition varying continuously along its thickness. Using this method, the effects of semi-vertex angle of the cone and the power law exponent on distribution of different types of displacements and stresses are considered.  相似文献   

8.
An analytic solution to the axisymmetric problem of a long, radially polarized, hollow cylinder composed of functionally graded piezoelectric material (FGPM) rotating about its axis at a constant angular velocity is presented. For the case that electric, thermal and mechanical properties of the material obey different power laws in the thickness direction, distributions for radial displacement, stresses and electric potential in the FGPM hollow cylinder are determined by using the theory of electrothermoelasticity. Some useful discussions and numerical examples are presented to show the significant influence of material nonhomogeneity, and adopting suitable graded indexes and applying suitable geometric size and rotating velocity ω may optimize the rotating FGPM hollow cylindrical structures. This will be of particular importance in modern engineering application.  相似文献   

9.
An analytical solution is presented for three-dimensional thermomechanical deformations of a simply supported functionally graded (FG) rectangular plate subjected to time-dependent thermal loads on its top and/or bottom surfaces. Material properties are taken to be analytical functions of the thickness coordinate. The uncoupled quasi-static linear thermoelasticity theory is adopted in which the change in temperature, if any, due to deformations is neglected. A temperature function that identically satisfies thermal boundary conditions at the edges and the Laplace transformation technique are used to reduce equations governing the transient heat conduction to an ordinary differential equation (ODE) in the thickness coordinate which is solved by the power series method. Next, the elasticity problem for the simply supported plate for each instantaneous temperature distribution is analyzed by using displacement functions that identically satisfy boundary conditions at the edges. The resulting coupled ODEs with variable coefficients are also solved by the power series method. The analytical solution is applicable to a plate of arbitrary thickness. Results are given for two-constituent metal-ceramic FG rectangular plates with a power-law through-the-thickness variation of the volume fraction of the constituents. The effective elastic moduli at a point are determined by either the Mori–Tanaka or the self-consistent scheme. The transient temperature, displacements, and thermal stresses at several critical locations are presented for plates subjected to either time-dependent temperature or heat flux prescribed on the top surface. Results are also given for various volume fractions of the two constituents, volume fraction profiles and the two homogenization schemes.  相似文献   

10.
In this paper, heat wave propagation and coupled thermoelasticity without energy dissipation in functionally graded thick hollow cylinder is presented based on Green–Naghdi theory. The material properties are supposed to vary as a power function of radius across the thickness of cylinder. The cylinder is considered in axisymmetry and plane strain conditions and it is divided to many sub-cylinders (layers) across the thickness. Each sub-cylinder is considered to be made of isotropic material and functionally graded property can be created by suitable arrangement of layers. The Galerkin finite element method and Newmark finite difference method are employed to solve the problem. The time history of second sounds and displacement wave propagation are obtained for various values of power function. Computed results agree well with the published data.  相似文献   

11.
This paper presents an analytical solution of a thick walled cylinder com- posed of a functionally graded piezoelectric material (FGPM) and subjected to a uniform electric field and non-axisymmetric thermo-mechanical loads. All material properties, except Poisson's ratio that is assumed to be constant, obey the same power law. An exact solution for the resulting Navier equations is developed by the separation of variables and complex Fourier series. Stress and strain distributions and a displacement field through the cylinder are obtained by this technique. To examine the analytical approach, different examples are solved by this method, and the results are discussed.  相似文献   

12.
A hollow functionally graded composite cylinder under static torsion, which consists of an inner and outer elastic circular tube with a cylindrical interface crack, is studied in this work. By utilizing Fourier integral transform method, the mixed boundary value problem is reduced to a Cauchy singular integral equation, from which the numerical results of the stress intensity factor are obtained by the Lobatto–Chebyshev quadrature technique. Numerical results demonstrate the coupled effects of geometrical, physical, and functionally graded parameters on the interfacial fracture behavior.  相似文献   

13.
Summary This paper is concerned with transient thermal stresses and thermal deformations of the axisymmetric problem of a solid cylinder on consideration of a moving boundary. Assuming that a heated edge of the cylinder which is kept at a constant temperature moves with a constant velocity, the temperature distribution of the cylinder is analyzed using a moving coordinate system. Thereafter, the associated thermal stress distributions and thermal displacements are determined with aid of the method of the thermoelastic potential function and Love's displacement function. As an illustration, numerical calculations are carried out for several values of the velocity of the moving boundary, and the influence of the velocity on the temperature distribution and the stress distribution are examined precisely.
Wärmespannungen und Verformungen in einem Zylinder mit bewegter Wärmequelle
Übersicht Es werden die Wärmespannungen und Verformungen in einem Zylinder untersucht, bei dem sich eine Wärmequelle mit konstanter Geschwindigkeit in axialer Richtung bewegt. Zunächst wird dabei die Temperaturverteilung im Zylinder mit Hilfe eines bewegten Koordinatensystems ermittelt. Dann werden die Wärmespannungen und die Verformungen mit der thermoelastischen Potentialfunktion und mit der Loveschen Verschiebungsfunktion bestimmt. Numerische Beispiele zeigen den Einfluß der Geschwindigkeit der Wärmequelle auf die Temperatur- und die Spannungsverteilung.
  相似文献   

14.
Transient thermal dynamic analysis of stationary cracks in functionally graded piezoelectric materials (FGPMs) based on the extended finite element method (X-FEM) is presented. Both heating and cooling shocks are considered. The material properties are supposed to vary exponentially along specific direction while the crack-faces are assumed to be adiabatic and electrically impermeable. A dynamic X-FEM model is developed in which both Crank–Nicolson and Newmark time integration methods are used for calculating transient responses of thermal and electromechanical fields respectively. The generalized dynamic intensity factors for the thermal stresses and electrical displacements are extracted by using the interaction integral. The accuracy of the developed approach is verified numerically by comparing the calculated results with reference solutions. Numerical examples with mixed-mode crack problems are analyzed. The effects of the crack-length, poling direction, material gradation, etc. on the dynamic intensity factors are investigated. It shows that the transient dynamic crack behaviors under the cooling shock differ from those under the heating shock. The influence of the thermal shock loading on the dynamic intensity factors is significant.  相似文献   

15.
This problem deals with the determination of thermo-elastic interaction due to step input of temperature on the boundaries of a functionally graded orthotropic hollow sphere in the context of linear theories of generalized thermo-elasticity. Using the Laplace transformation the fundamental equations have been expressed in the form of vector–matrix differential equation which is then solved by eigenvalue approach. The inverse of the transformed solution is carried out by applying a method of Bellman et al. Stresses, displacement and temperature distributions have been computed numerically and presented graphically in a number of figures. A comparison of the results for different theories (TEWOED(GN-II), TEWED(GN-III) and three-phase-lag model) is presented. When the material is homogeneous, isotropic and outer radius of the hollow sphere tends to infinity, the corresponding results agree with that of existing literature for GN-III model.  相似文献   

16.
 Mathematical simulation of a thermal shock method for reliability testing of functionally graded material (FGM) is performed with the end to determine operating parameters of the testing device (power of a laser, laser beam radius, duration of heating) and to investigate the effect of the composition of FGM on a magnitude of thermal stresses in a coating. An analytical method for solution of the thermal elasticity problem is developed whereby the approach of a multilayer plate is used for determining temperature and thermal stresses distributions in a coating. We considered the limiting case of the obtained solution when the thickness of a layer is infinitesimally small and the number of layers tends to infinity. This procedure allowed us to obtain the thermal stresses distribution in a FGM coating. The results for the FGM coating composed of WC (tungsten carbide) ceramics and HS-steel are presented. It is showed that variation of the volume content of ceramics strongly affects thermal stresses in a coating and they decrease significantly in the case of the uniform spatial distribution of ceramics. Received on 21 November 2000 / Published online: 29 November 2001  相似文献   

17.
Based on the 3D thermoelasticity theory, the thermoelastic analysis of laminated cylindrical panels with finite length and functionally graded (FG) layers subjected to three-dimensional (3D) thermal loading are presented. The material properties are assumed to be temperature-dependent and graded in the thickness direction. The variations of the field variables across the panel thickness are accurately modeled by using a layerwise differential quadrature (DQ) approach. After validating the approach, as an important application, two common types of FG sandwich cylindrical panels, namely, the sandwich panels with FG face sheets and homogeneous core and the sandwich panels with homogeneous face sheets and FG core are analyzed. The effect of micromechanical modeling of the material properties on the thermoelastic behavior of the panels is studied by comparing the results obtained using the rule of mixture and Mori–Tanaka scheme. The comparison studies reveal that the difference between the results of the two micromechanical models is very small and can be neglected. Then, the effects of different geometrical parameters, material graded index and also the temperature dependence of the material properties on the thermoelastic behavior of the FG sandwich cylindrical panels are carried out.  相似文献   

18.
An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson’s ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler’s equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.  相似文献   

19.
The free vibration of an arbitrarily thick orthotropic piezoelectric hollow cylinder with a functionally graded property along the thickness direction and filled with a non-viscous compressible fluid medium is investigated. The analysis is directly based on the three-dimensional exact equations of piezoelasticity using the so-called state space formulations. The original functionally graded shell is approximated by a laminate model, of which the solution will gradually approach the exact one when the number of layers increases. The effect of internal fluid can be taken into consideration by imposing a relation between the fluid pressure and the radial displacement at the interface. Analytical frequency equations are derived for different electrical boundary conditions at two cylindrical surfaces. As particular cases, free vibration of multi-layered piezoelectric hollow cylinder and wave propagation in infinite homogeneous cylinder are studied. Numerical comparison with available results is made and dispersion curves predicted from the present three-dimensional analysis are given. Numerical examples are further performed to investigate the effects of various parameters on the natural frequencies.  相似文献   

20.
An elastodynamic solution for plane-strain response of functionally graded thick hollow cylinders subjected to uniformly-distributed dynamic pressures at boundary surfaces is presented. The material properties, except Poisson’s ratio, are assumed to vary through the thickness according to a power law function. To achieve an exact solution, the dynamic radial displacement is divided into two quasi-static and dynamic parts, and for each part, an analytical solution is derived. The quasi-static solution is obtained by means of Euler’s equation, and the dynamic solution is derived using the method of the separation of variables and the orthogonal expansion technique. The radial displacement and stress distributions are plotted for various functionally graded material (FGM) hollow cylinders under different dynamic loads, and the advantages of the presented method are discussed. The proposed analytical solution is suitable for analyzing various arrangements of hollow FGM cylinders with arbitrary thickness and arbitrary initial conditions, which are subjected to arbitrary forms of dynamic pressures distributed uniformly on their boundary surfaces.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号