首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The coupled-cluster singles and doubles method augmented with single Slater-type correlation factors (CCSD-F12) determined by the cusp conditions (also denoted as SP ansatz) yields results close to the basis set limit with only small overhead compared to conventional CCSD. Quantitative calculations on many-electron systems, however, require to include the effect of connected triple excitations at least. In this contribution, the recently proposed [A. Ko?hn, J. Chem. Phys. 130, 131101 (2009)] extended SP ansatz and its application to the noniterative triples correction CCSD(T) is reviewed. The approach allows to include explicit correlation into connected triple excitations without introducing additional unknown parameters. The explicit expressions are presented and analyzed, and possible simplifications to arrive at a computationally efficient scheme are suggested. Numerical tests based on an implementation obtained by an automated approach are presented. Using a partial wave expansion for the neon atom, we can show that the proposed ansatz indeed leads to the expected (L(max)+1)(-7) convergence of the noniterative triples correction, where L(max) is the maximum angular momentum in the orbital expansion. Further results are reported for a test set of 29 molecules, employing Peterson's F12-optimized basis sets. We find that the customary approach of using the conventional noniterative triples correction on top of a CCSD-F12 calculation leads to significant basis set errors. This, however, is not always directly visible for total CCSD(T) energies due to fortuitous error compensation. The new approach offers a thoroughly explicitly correlated CCSD(T)-F12 method with improved basis set convergence of the triples contributions to both total and relative energies.  相似文献   

2.
The basis set convergence of weak interaction energies for dimers of noble gases helium through krypton is studied for six variants of the explicitly correlated, frozen geminal coupled-cluster singles, doubles, and noniterative triples [CCSD(T)-F12] approach: the CCSD(T)-F12a, CCSD(T)-F12b, and CCSD(T)(F12*) methods with scaled and unscaled triples. These dimers were chosen because CCSD(T) complete-basis-set (CBS) limit benchmarks are available for them to a particularly high precision. The dependence of interaction energies on the auxiliary basis sets has been investigated and it was found that the default resolution-of-identity sets cc-pVXZ/JKFIT are far from adequate in this case. Overall, employing the explicitly correlated approach clearly speeds up the basis set convergence of CCSD(T) interaction energies, however, quite surprisingly, the improvement is not as large as the one achieved by a simple addition of bond functions to the orbital basis set. Bond functions substantially improve the CCSD(T)-F12 interaction energies as well. For small and moderate bases with bond functions, the accuracy delivered by the CCSD(T)-F12 approach cannot be matched by conventional CCSD(T). However, the latter method in the largest available bases still delivers the CBS limit to a better precision than CCSD(T)-F12 in the largest bases available for that approach. Our calculations suggest that the primary reason for the limited accuracy of the large-basis CCSD(T)-F12 treatment are the approximations made at the CCSD-F12 level and the non-explicitly correlated treatment of triples. In contrast, the explicitly correlated second-order Mo?ller-Plesset perturbation theory (MP2-F12) approach is able to pinpoint the complete-basis-set limit MP2 interaction energies of rare gas dimers to a better precision than conventional MP2. Finally, we report and analyze an unexpected failure of the CCSD(T)-F12 method to deliver the core-core and core-valence correlation corrections to interaction energies consistently and accurately.  相似文献   

3.
Explicitly correlated second-order M?ller-Plesset (MP2-F12) calculations of intermolecular interaction energies for the S22 benchmark set of Jurecka, Sponer, Cerny, and Hobza (Chem. Phys. Phys. Chem. 2006, 8, 1985) are presented and compared with standard MP2 results. The MP2 complete basis set limits are estimated using basis set extrapolation and augmented quadruple-zeta and quintuple-zeta basis sets. Already with augmented double-zeta basis sets the MP2-F12 interaction energies are found to be closer to the complete basis set limits than standard MP2 calculations with augmented quintuple-zeta basis sets. Various possible approximations in the MP2-F12 method are systematically tested. Best results are obtained with localized orbitals and the diagonal MP2-F12/C(D) ansatz. Hybrid approximations, in which some contributions of the auxiliary basis set are neglected and which considerably reduce the computational cost, have a negligible effect on the interaction energies. Also the orbital-invariant fixed-amplitude approximation of Ten-no leads to only slightly less accurate results. Preliminary results for the neon and benzene dimers, obtained with the recently proposed CCSD(T)-F12a approximation, indicate that the CCSD(T) basis set limits can also be very closely approached using augmented triple-zeta basis sets.  相似文献   

4.
We have investigated the slipped parallel and t-shaped structures of carbon dioxide dimer [(CO(2))(2)] using both conventional and explicitly correlated coupled cluster methods, inclusive and exclusive of counterpoise (CP) correction. We have determined the geometry of both structures with conventional coupled cluster singles doubles and perturbative triples theory [CCSD(T)] and explicitly correlated cluster singles doubles and perturbative triples theory [CCSD(T)-F12b] at the complete basis set (CBS) limits using custom optimization routines. Consistent with previous investigations, we find that the slipped parallel structure corresponds to the global minimum and is 1.09 kJ mol(-1) lower in energy. For a given cardinal number, the optimized geometries and interaction energies of (CO(2))(2) obtained with the explicitly correlated CCSD(T)-F12b method are closer to the CBS limit than the corresponding conventional CCSD(T) results. Furthermore, the magnitude of basis set superposition error (BSSE) in the CCSD(T)-F12b optimized geometries and interaction energies is appreciably smaller than the magnitude of BSSE in the conventional CCSD(T) results. We decompose the CCSD(T) and CCSD(T)-F12b interaction energies into the constituent HF or HF CABS, CCSD or CCSD-F12b, and (T) contributions. We find that the complementary auxiliary basis set (CABS) singles correction and the F12b approximation significantly reduce the magnitude of BSSE at the HF and CCSD levels of theory, respectively. For a given cardinal number, we find that non-CP corrected, unscaled triples CCSD(T)-F12b/VXZ-F12 interaction energies are in overall best agreement with the CBS limit.  相似文献   

5.
We have optimized the lowest energy structures and calculated interaction energies for the CO(2)-Ar, CO(2)-N(2), CO(2)-CO, CO(2)-H(2)O, and CO(2)-NH(3) dimers with the recently developed explicitly correlated coupled cluster singles doubles and perturbative triples [CCSD(T)]-F12 methods and the associated VXZ-F12 (where X = D,T,Q) basis sets. For a given cardinal number, we find that results obtained with the CCSD(T)-F12 methods are much closer to the CCSD(T) complete basis set limit than the conventional CCSD(T) results. The relatively modest increase in the computational cost between explicit and conventional CCSD(T) is more than compensated for by the impressive accuracy of the CCSD(T)-F12 method. We recommend use of the CCSD(T)-F12 methods in combination with the VXZ-F12 basis sets for the accurate determination of equilibrium geometries and interaction energies of weakly bound electron donor acceptor complexes.  相似文献   

6.
A new explicitly correlated local coupled-cluster method with single and double excitations and a perturbative treatment of triple excitations [DF-LCCSD(T0)-F12x (x = a,b)] is presented. By means of truncating the virtual orbital space to pair-specific local domains (domain approximation) and a simplified treatment of close, weak and distant pairs using LMP2-F12 (pair approximation) the scaling of the computational cost with molecular size is strongly reduced. The basis set incompleteness errors as well as the errors due to the domain approximation are largely eliminated by the explicitly correlated terms. All integrals are computed using efficient density fitting (DF) approximations. The accuracy of the method is investigated for 52 reactions involving medium size molecules. A comparison of DF-LCCSD(T0)-F12x reaction energies with canonical CCSD(T)-F12x calculations shows that the errors introduced by the domain approximation are indeed very small. Care must be taken to keep the errors due to the additional pair approximation equally small, and appropriate distance criteria are recommended. Using these parameters, the root mean square (RMS) deviations of DF-LCCSD(T0)-F12a calculations with triple-ζ basis sets from estimated CCSD(T) complete basis set (CBS) limits and experimental data amount to only 1.5 kJ mol(-1) and 2.9 kJ mol(-1), respectively. For comparison, the RMS deviation of the CCSD(T)/CBS values from the experimental values amounts to 3.0 kJ mol(-1). The potential of the method is demonstrated for five reactions of biochemical or pharmacological interest which include molecules with up to 61 atoms. These calculations show that molecules of this size can now be treated routinely and yield results that are close to the CCSD(T) complete basis set limits.  相似文献   

7.
We present a variational formulation of the recently-proposed CCSD(2)(R12) method [Valeev, Phys. Chem. Chem. Phys., 2008, 10, 106]. The centerpiece of this approach is the CCSD(2)(R12) Lagrangian obtained via L?wdin partitioning of the coupled-cluster singles and doubles (CCSD) Hamiltonian. Extremization of the Lagrangian yields the second-order basis set incompleteness correction for the CCSD energy. We also developed a simpler Hylleraas-type functional that only depends on one set of geminal amplitudes by applying screening approximations. This functional is used to develop a diagonal orbital-invariant version of the method in which the geminal amplitudes are fixed at the values determined by the first-order cusp conditions. Extension of the variational method to include perturbatively the effect of connected triples produces the method that approximates the complete basis-set limit of the standard CCSD plus perturbative triples [CCSD(T)] method. For a set of 20 small closed-shell molecules, the method recovered at least 94.5/97.3% of the CBS CCSD(T) correlation energy with the aug-cc-pVDZ/aug-cc-pVTZ orbital basis set. For 12 isogyric reactions involving these molecules, combining the aug-cc-pVTZ correlation energies with the aug-cc-pVQZ Hartree-Fock energies produces the electronic reaction energies with a mean absolute deviation of 1.4 kJ mol(-1) from the experimental values. The method has the same number of optimized parameters as the corresponding CCSD(T) model, does not require any modification of the coupled-cluster computer program, and only needs a small triple-zeta basis to match the precision of the considerably more expensive standard quintuple-zeta CCSD(T) computation.  相似文献   

8.
Geminal functions based on Slater-type correlation factors and fixed expansion coefficients, determined by cusp conditions, have in recent years been forwarded as an efficient and numerically stable method for introducing explicit electron correlation into coupled-cluster theory. In this work, we analyze the equations of explicitly correlated coupled-cluster singles and doubles (CCSD-F12) theory and introduce an ordering scheme based on perturbation theory which can be used to characterize and understand the various approximations found in the literature. Numerical results for a test set of 29 molecules support our analysis and give additional insight. In particular, our results help rationalize the success of the CCSD(F12) approximation which is based on a very systematic cancellation of the neglected, otherwise individually large third-order geminal-geminal coupling terms. Further approximations to CCSD(F12) can be introduced without sacrificing the accuracy if the entire set of third-order coupling terms between the conventional doubles cluster amplitudes and the geminal doubles amplitudes is retained, leading to the recently proposed CCSD[F12] and CCSD(F12(?)) models, which have negligible overhead compared to conventional CCSD calculations. Particularly, the importance of the ring-term type contribution is pointed out which may be used to improve on other existing approximations such as CCSD-F12b. For small basis sets, it might be advantageous to keep certain higher-order terms leading to CCSD-F12(?), which, for the case of the SP ansatz, merely involves a noniterative correction to CCSD(F12(?)).  相似文献   

9.
A new explicitly correlated CCSD(T)-F12 approximation is presented and tested for 23 molecules and 15 chemical reactions. The F12 correction strongly improves the basis set convergence of correlation and reaction energies. Errors of the Hartree-Fock contributions are effectively removed by including MP2 single excitations into the auxiliary basis set. Using aug-cc-pVTZ basis sets the CCSD(T)-F12 calculations are more accurate and two orders of magnitude faster than standard CCSD(T)/aug-cc-pV5Z calculations.  相似文献   

10.
We employ ab initio methods to find stable geometries and to calculate potential energy surfaces and vibrational wavenumbers for sulfuric acid monohydrate. Geometry optimizations are carried out with the explicitly correlated coupled-cluster approach that includes single, double, and perturbative triple excitations (CCSD(T)-F12a) with a valence double-ζ basis set (VDZ-F12). Four different stable geometries are found, and the two lowest are within 0.41 kJ mol(-1) (or 34 cm(-1)) of each other. Vibrational harmonic wavenumbers are calculated at both the density-fitted local spin component scaled second-order M?ller-Plesset perturbation theory (DF-SCS-LMP2) with the aug-cc-pV(T+d)Z basis set and the CCSD-F12/VDZ-F12 level. Water O-H stretching vibrations and two highly anharmonic large-amplitude motions connecting the three lowest potential energy minima are considered by limiting the dimensionality of the corresponding potential energy surfaces to small two- or three-dimensional subspaces that contain only strongly coupled vibrational degrees of freedom. In these anharmonic domains, the vibrational problem is solved variationally using potential energy surfaces calculated at the CCSD(T)-F12a/VDZ-F12 level.  相似文献   

11.
In benchmark-quality studies of non-covalent interactions, it is common to estimate interaction energies at the complete basis set (CBS) coupled-cluster through perturbative triples [CCSD(T)] level of theory by adding to CBS second-order perturbation theory (MP2) a "coupled-cluster correction," δ(MP2)(CCSD(T)), evaluated in a modest basis set. This work illustrates that commonly used basis sets such as 6-31G*(0.25) can yield large, even wrongly signed, errors for δ(MP2)(CCSD(T)) that vary significantly by binding motif. Double-ζ basis sets show more reliable results when used with explicitly correlated methods to form a δ(MP2-F12)(CCSD(T(*))-F12) correction, yielding a mean absolute deviation of 0.11 kcal mol(-1) for the S22 test set. Examining the coupled-cluster correction for basis sets up to sextuple-ζ in quality reveals that δ(MP2)(CCSD(T)) converges monotonically only beyond a turning point at triple-ζ or quadruple-ζ quality. In consequence, CBS extrapolation of δ(MP2)(CCSD(T)) corrections before the turning point, generally CBS (aug-cc-pVDZ,aug-cc-pVTZ), are found to be unreliable and often inferior to aug-cc-pVTZ alone, especially for hydrogen-bonding systems. Using the findings of this paper, we revise some recent benchmarks for non-covalent interactions, namely the S22, NBC10, HBC6, and HSG test sets. The maximum differences in the revised benchmarks are 0.080, 0.060, 0.257, and 0.102 kcal mol(-1), respectively.  相似文献   

12.
For the atoms with Z ≤ 11, energies obtained using the "initiator" extension to full configuration interaction quantum Monte Carlo (i-FCIQMC) come to within statistical errors of the FCIQMC results. As these FCIQMC values have been shown to converge onto FCI results, the i-FCIQMC method allows similar accuracy to be achieved while significantly reducing the scaling with the size of the Slater determinant space. The i-FCIQMC electron affinities of the Z ≤ 11 atoms in the aug-cc-pVXZ basis sets are presented here. In every case, values are obtained to well within chemical accuracy [the mean absolute deviation (MAD) from the relativistically corrected experimental values is 0.41 mE(h)], and significantly improve on coupled cluster with singles, doubles and perturbative triples [CCSD(T)] results. Since the only remaining source of error is basis set incompleteness, we have investigated using CCSD(T)-F12 contributions to correct the i-FCIQMC results. By doing so, much faster convergence with respect to basis set size may be achieved for both the electron affinities and the FCIQMC ionization potentials presented in a previous paper. With this F12 correction, the MAD can be further reduced to 0.13 mE(h) for the electron affinities and 0.31 mE(h) for the ionization potentials.  相似文献   

13.
High level ab initio electronic structure calculations at different levels of theory have been performed on HNP and HPN neutrals, anions, and cations. This includes standard coupled cluster CCSD(T) level with augmented correlation-consistent basis sets, internally contacted multi-reference configuration interaction, and the newly developed CCSD(T)-F12 methods in connection with the explicitly correlated basis sets. Core-valence correction and scalar relativistic effects were examined. We present optimized equilibrium geometries, harmonic vibrational frequencies, rotational constants, adiabatic ionization energies, electron affinities, vertical detachment energies, and relative energies. In addition, the three-dimensional potential energy surfaces of HNP(-1,0,+1) and of HPN(-1,0,+1) were generated at the (R)CCSD(T)-F12b∕cc-pVTZ-F12 level. The anharmonic terms and fundamentals were derived using second order perturbation theory. For HNP, our best estimate for the adiabatic ionization energy is 7.31 eV, for the adiabatic electron affinity is 0.47 eV. The higher energy isomer, HPN, is 23.23 kcal∕mol above HNP. HPN possesses a rather large adiabatic electron affinity of 1.62 eV. The intramolecular isomerization pathways were computed. Our calculations show that HNP(-) to HPN(-) reaction is subject to electron detachment.  相似文献   

14.
State-of-the-art ab initio techniques have been applied to compute the potential energy surface for the lithium atom interacting with the lithium hydride molecule in the Born-Oppenheimer approximation. The interaction potential was obtained using a combination of the explicitly correlated unrestricted coupled-cluster method with single, double, and noniterative triple excitations [UCCSD(T)-F12] for the core-core and core-valence correlation and full configuration interaction for the valence-valence correlation. The potential energy surface has a global minimum 8743 cm(-1) deep if the Li-H bond length is held fixed at the monomer equilibrium distance or 8825 cm(-1) deep if it is allowed to vary. In order to evaluate the performance of the conventional CCSD(T) approach, calculations were carried out using correlation-consistent polarized valence X-tuple-zeta basis sets, with X ranging from 2 to 5, and a very large set of bond functions. Using simple two-point extrapolations based on the single-power laws X(-2) and X(-3) for the orbital basis sets, we were able to reproduce the CCSD(T)-F12 results for the characteristic points of the potential with an error of 0.49% at worst. The contribution beyond the CCSD(T)-F12 model, obtained from full configuration interaction calculations for the valence-valence correlation, was shown to be very small, and the error bars on the potential were estimated. At linear LiH-Li geometries, the ground-state potential shows an avoided crossing with an ion-pair potential. The energy difference between the ground-state and excited-state potentials at the avoided crossing is only 94 cm(-1). Using both adiabatic and diabatic pictures, we analyze the interaction between the two potential energy surfaces and its possible impact on the collisional dynamics. When the Li-H bond is allowed to vary, a seam of conical intersections appears at C(2v) geometries. At the linear LiH-Li geometry, the conical intersection is at a Li-H distance which is only slightly larger than the monomer equilibrium distance, but for nonlinear geometries it quickly shifts to Li-H distances that are well outside the classical turning points of the ground-state potential of LiH. This suggests that the conical intersection will have little impact on the dynamics of Li-LiH collisions at ultralow temperatures. Finally, the reaction channels for the exchange and insertion reactions are also analyzed and found to be unimportant for the dynamics.  相似文献   

15.
This work reports the results of high level ab initio calculations of the OC-HCO(+) complex and the SC-HCS(+) complex and their hydrogen migration transition states. Geometry optimizations are performed at the CCSD(T)/aug-cc-pV5Z level of theory. Subsequent frequency calculations are carried out at the CCSD(T)/aug-cc-pVQZ level of theory. Additional geometry optimizations and harmonic frequency calculations for all the species involved in this study have been done with the explicitly correlated CCSD(T)-F12 method with the aug-cc-pVTZ and VTZ-F12 basis set. The geometries, rotational constants, harmonic vibrational frequencies, and energetics of the species involved in the complex are reported. These methods result in accurate computational predictions that have mean deviations for bond lengths, rotational constants, and vibrational frequencies of 0.001 A?, 163 MHz, and 46 cm(-1), respectively. These results provide essential spectroscopic properties for the complexes that can facilitate both laboratory and interstellar observations, and they also provide a comparison between oxygen and sulfur complex observability based on thermodynamic stability.  相似文献   

16.
Explicitly correlated ab initio methods have been used to compute full quartic force fields for the three chain minima for HOOOOH, which are found to lie within 1 kcal mol(-1). The CCSD(T)-F12 method with the cc-pVTZ-F12 basis set was used to compute equilibrium structures, anharmonic vibrational frequencies, and rotational constants for HOOH, HOOOH, and three chain isomers of HOOOOH, with the two former force fields being used as benchmarks for the latter three. The full quartic force fields were computed in such a way as to yield fundamental frequencies for all isotopologues at once. The present research confirms the recent experimental identification of HOOOH and provides reliable force fields in support of future experimental work on the enigmatic bonding paradigms involved in the HOOOOH chain.  相似文献   

17.
Explicitly correlated CCSD(T)-F12a/b methods combined with basis sets specifically designed for this technique have been tested for their ability to reproduce standard CCSD(T) benchmark data covering 16 small molecules composed of hydrogen and carbon. The standard method calibration set was obtained with very large one-particle basis sets, including some aug-cc-pV7Z and aug-cc-pV8Z results. Whenever possible, the molecular properties (atomization energies, structures, and harmonic frequencies) were extrapolated to the complete basis set limit in order to facilitate a direct comparison of the standard and explicitly correlated approaches without ambiguities arising from the use of different basis sets. With basis sets of triple-ζ quality or better, the F12a variant was found to overshoot the presumed basis set limit, while the F12b method converged rapidly and uniformly. Extrapolation of F12b energies to the basis set limit was found to be very effective at reproducing the best standard method atomization energies. Even extrapolations based on the small cc-pVDZ-F12/cc-pVTZ-F12 combination proved capable of a mean absolute deviation of 0.20 kcal/mol. The accuracy and simultaneous cost savings of the F12b approach are such that it should enable high quality property calculations to be performed on chemical systems that are too large for standard CCSD(T).  相似文献   

18.
The fulvenallenyl cation (C(7)H(5)(+)) and its complex with an argon atom have been studied by explicitly correlated coupled cluster theory at the CCSD(T)-F12x(x = a, b) level and by the double-hybrid density functional B2PLYP-D. For the free cation, an accurate equilibrium structure has been established and ground-state rotational constants of A(0) = 8116.4 MHz, B(0) = 2004.3 MHz, and C(0) = 1606.9 MHz are predicted. The equilibrium dipole moment is calculated to be μ(e) = 1.305 D, with the positive end of the dipole at the acetylenic hydrogen site. Anharmonic wavenumbers of C(7)H(5)(+) were obtained by combination of harmonic CCSD(T*)-F12a values and B2PLYP-D anharmonic contributions. The most intense vibration is the pseudoantisymmetric CC stretching vibration at 2083 cm(-1). The potential energy surface of the complex C(7)H(5)(+)·Ar is characterized by two energy minima of C(s) symmetry which are separated by a very low energy barrier. The dissociation energy of the most stable structure is predicted to be D(0) = 530 ± 30 cm(-1).  相似文献   

19.
It is shown that the convergence of anharmonic infrared spectral intensities with respect to the basis set size is much enhanced in explicitly correlated calculations as compared to traditional configuration interaction type wave function expansion. Explicitly correlated coupled cluster (CC) calculations using Slater-type geminal correlation factor (CC-F12) yield well-converged dipole derivatives and vibrational intensities for hydrogen fluoride with basis set involving f functions on the heavy atom. Combination of CC-F12 with singles, doubles, and non-iterative triples (CCSD(T)-F12) with small corrections due to quadruple excitations, core-electron correlation, and relativistic effects yields vibrational line positions, dipole moments, and transition dipole matrix elements in good agreement with the best experimental values.  相似文献   

20.
Explicitly correlated coupled cluster theory at the CCSD(T)-F12x (x = a, b) level (Adler, T. B.; Knizia, G.; Werner, H.-J. J. Chem. Phys. 2007, 127, 221106) has been employed in a study of the benzenium ion (C6H7(+)) and its complexes with a neon or an argon atom. The ground-state rotational constants of C6H7(+) are predicted to be A0 = 5445 MHz, B0 = 5313 MHz, and C0 = 2731 MHz. Anharmonic vibrational wavenumbers of this cation were obtained by combination of harmonic CCSD(T*)-F12a values with anharmonic contributions calculated by double-hybrid density functional theory at the B2PLYP-D level. For the complexes of C6H7(+) with Ne or Ar, the lowest energy minimum is of π-bonded structure. The corresponding dissociation energies D0 are estimated to be 160 and 550 cm(-1), respectively. There is no indication of H-bonds to the aromatic or aliphatic hydrogen atoms. Instead, three nonequivalent local energy minima were found for nuclear configurations where the rare-gas atom lies in the ring-plane and approximatly points to the center of one of the six CC bonds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号