首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
RNA-RNA interactions are essential for biology, but they can be difficult to study due to their transient nature. While crosslinking strategies can in principle be used to trap such interactions, virtually all existing strategies for crosslinking are poorly reversible, chemically modifying the RNA and hindering molecular analysis. We describe a soluble crosslinker design (BINARI) that reacts with RNA through acylation. We show that it efficiently crosslinks noncovalent RNA complexes with mimimal sequence bias and establish that the crosslink can be reversed by phosphine reduction of azide trigger groups, thereby liberating the individual RNA components for further analysis. The utility of the new approach is demonstrated by reversible protection against nuclease degradation and trapping transient RNA complexes of E. coli DsrA-rpoS derived bulge-loop interactions, which underlines the potential of BINARI crosslinkers to probe RNA regulatory networks.  相似文献   

2.
The noncovalent complex formed in solution between minor groove binding molecules and an oligonucleotide duplex was investigated by electrospray ionization-mass spectrometry (ESI-MS). The oligonucleotide duplex formed between two sequence-specific 14-base pair oligonucleotides was observed intact by ESI-MS and in relatively high abundance compared to the individual single-stranded components. Only sequence-specific A:B duplexes were observed, with no evidence of random nonspecific aggregation (i.e., A:A or B:B) occurring under the conditions utilized. Due to the different molecular weights of the two 14-base pair oligonucleotides, unambiguous determination of each oligonucleotide and the sequence-specific duplex was confirmed through their detection at unique mass-to-charge ratios. The noncovalent complexes formed between the self-complementary 5′-dCGCAAATTTGCG-3′ oligonucleotide and three minor groove binding molecules (distamycin A, pentamidine, and Hoechst 33258) were also observed. Variation of several electrospray ionization interface parameters as well as collision-induced dissociation methods were utilized to characterize the nature and stability of the noncovalent complexes. The noncovalent complexes upon collisional activation dissociated into single-stranded oligonucleotides and single-stranded oligonucleotides associated with a minor groove binding molecule. ESI-MS shows potential for the study of small molecule-oligonucleotide duplex interactions and determination of small molecule binding stoichiometry.  相似文献   

3.
The study of noncovalent interactions by mass spectrometry has become an active field of research in recent years. The role of the different noncovalent intermolecular forces is not yet fully understood since they tend to be modulated upon transfer into the gas phase. The hydrophobic effect, which plays a major role in protein folding, adhesion of lipid bilayers, etc., is absent in the gas phase. Here, noncovalent complexes with different types of interaction forces were investigated by mass spectrometry and compared with the complex present in solution. Creatine kinase (CK), glutathione S-transferase (GST), ribonuclease S (RNase S), and leucine zipper (LZ), which have dissociation constants in the nM range, were studied by native nanoelectrospray mass spectrometry (nanoESI-MS) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) combined with chemical cross-linking (XL). Complexes interacting with hydrogen bonds survived the transfer into gas phase intact and were observed by nanoESI-MS. Complexes that are bound largely by the hydrophobic effect in solution were not detected or only at very low intensity. Complexes with mixed polar and hydrophobic interactions were detected by nanoESI-MS, most likely due to the contribution from polar interactions. All noncovalent complexes could easily be studied by XL MALDI-MS, which demonstrates that the noncovalently bound complexes are conserved, and a real “snap-shot” of the situation in solution can be obtained.  相似文献   

4.
The vitamin D receptor (VDR) binds zinc, and the activity of vitamin D dependent genes in cells is influenced by intracellular zinc concentrations. To determine whether zinc influences vitamin D action in cells by modulating the formation of VDR and retinoid x receptor alpha (RXR alpha) heterodimer-DNA complexes, we used microelectrospray ionization mass spectrometry (microESI-MS) to assess receptor-DNA interactions in the presence of varying amounts of zinc. In the absence of DNA, VDR and RXR alpha proteins were primarily monomeric with small amounts of protein homodimers also observed. Zn(2+) (up to 300 microM) did not change VDR or RXR alpha monomer/homodimer ratios. Mass spectra of VDR combined with RXR alpha were a sum of individual protein spectral data. Zn(2+) had no effect on the interactions of receptors. With increasing amounts of Zn(2+), additional Zn(2+) ions were detected bound to VDR and RXR alpha. microESI-MS analyses of RXR alpha in the presence of an osteopontin vitamin D DNA response element (OP-VDRE) showed RXR alpha homodimer/OP-VDRE complexes. DNA-protein complex formation increased on addition of Zn(2+) up to 200 microM; at 300 microM, Zn(2+) dissociation of the RXR alpha homodimer/OP-VDRE complexes occurred, coincident with the appearance of RXR alpha monomeric protein. When microESI-MS analyses were carried out with VDR and OP-VDRE, VDR homodimer/OP-VDRE complexes were not detected. Addition of Zn(2+) did not result in VDR/OP-VDRE complex formation. Heterodimeric VDR/RXR alpha complexes with OP-VDRE were detected by microESI-MS. Addition of 300 microM Zn(2+) resulted in dissociation of the heterodimeric VDR/RXR alpha/OP-VDRE complex. Addition of Mg(2+) in place of Zn(2+) did not alter protein/OP-VDRE complexes. Our results show that zinc modulates steroid hormone receptor-DNA interactions.  相似文献   

5.
运用电喷雾离子化飞行时间质谱分析鸡蛋清溶菌酶与β-环糊精的复合物。通过减少β-环糊精的配制浓度至原来的1/5,发现形成1:2和1:3复合比的溶菌酶-β-环糊精复合物的离丰度减弱,但化学计量比为1:1的复合物变化不大,证明该新型复合物为非特异性非共价复合物。此外还对质谱参数、分析条件对复合物离子化的影响作了详尽的考察,得出在nozzle电压为200V时复合物信号最强,在不影响生物分子高级结构的前提下添加少量的有机溶剂如甲醇、乙腈等能较明显地改善质谱信号。  相似文献   

6.
The recognition of the aminoglycosides neomycin and streptomycin by HIV-1 TAR RNA was studied by electrospray ionization mass spectrometry (ESI-MS). Members of the aminoglycoside family of antibiotics are known to target a wide variety of RNA molecules. Neomycin and streptomycin inhibit the formation of the Tat protein–TAR RNA complex, an assembly that is believed to be necessary for HIV replication. The noncovalent complexes formed by the binding of aminoglycosides to TAR RNA and the Tat–TAR complex were detected by ESI-MS. Neomycin has a maximum binding stoichiometry of three and two to TAR RNA and to the Tat–TAR complex, respectively. Data from the ESI-MS experiments suggest that a high affinity binding site of neomycin is located near the three-nucleotide bulge region of TAR RNA. This is consistent with previous solution phase footprinting measurements [H.-Y. Mei et al., Biochemistry 37 (1998) 14204]. Neomycin has a higher affinity toward TAR RNA than streptomycin, as measured by ESI-MS competition binding experiments. A noncovalent complex formed between a small molecule inhibitor of TAR RNA, which has a similar solution binding affinity as the aminoglycosides, and TAR RNA is much less stable than the RNA–aminoglycoside complexes to collisional dissociation in the gas phase. It is believed that the small molecule inhibitor interacts with TAR RNA via hydrophobic interactions, whereas the aminoglycosides bind to RNAs through electrostatic forces. This difference in gas phase stabilities may prove useful for discerning the types of noncovalent forces holding complexes together.  相似文献   

7.
The host-guest interactions play a very important role in chemical and biological processes. It is therefore important to be able to characterize these complexes. Electrospray mass spectrometry can be used to characterize the complex formation. It provides information on the mass and the charge of these ionic complexes. In this article, we show that the use of ab initio and semiempirical calculations, in addition to the results obtained by electrospray mass spectrometry, reveal to be a promising tool for the study of these noncovalent complexes. In this article, host-guest complexes formed by macropolycyclic polyammonium host molecules and dicarboxylic acids are studied.  相似文献   

8.
In the present work we demonstrate the advantages of LILBID mass spectrometry (laser‐induced liquid bead ion desorption) in the analysis of nucleic acids and large oligonucleotides. For established methods like matrix‐assisted laser desorption/ionization (MALDI) and electrospray ionization (ESI), the mass analysis of oligonucleotides or of noncovalent oligonucleotide‐protein complexes, in particular of very large ones, still represents a considerable challenge either due to the lack of native solutions or nonspecific adduct formation or due to a reduced salt tolerance or a high charge state of the ions. With LILBID, oligonucleotides, solvated in micro‐droplets of aqueous buffer at certain pH and ion strength, are brought into the gas phase by laser ablation. We show that our method is able to detect single‐ and double‐stranded oligonucleotides with high softness, demonstrated by the buffer dependence of the melting of a duplex. The absolute sensitivity is in the attomole range concomitant with a total analyte consumption in the femtomole region. The upper mass limit of oligonucleotides still detected with good signal‐to‐noise ratio with LILBID is the 1.66 MDa plasmid pUC19. With DNA ladders from short duplexes with sticky ends, we show that LILBID correctly reflects the relative thermodynamic stabilities of the ladders. Moreover, as an example for a specific DNA–protein complex we show that a NF‐κB p50 homodimer binds sequence specifically to its match DNA. In summary we demonstrate that LILBID, although presently performed only with low mass resolution, due to these advantages, is an alternative mass spectrometric method for the analysis of oligonucleotides in general and of specific noncovalent nucleic acid–protein complexes in particular. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.
Electrospray mass spectrometry (ESI-MS) has become the tool of choice for the study of noncovalent complexes. Our previous work has highlighted the role of phosphorylated amino acid residues in the formation of noncovalent complexes through electrostatic interaction with arginine residues’ guanidinium groups. In this study, we employ tandem mass spectrometry to investigate the gas-phase stability and dissociation pathways of these noncovalent complexes. The only difference in the three phosphopeptides tested is the nature of the phosphorylated amino acid residue. In addition the absence of acidic residues and an amidated carboxyl terminus insured that the only negative charge came from the phosphate, which allowed for the comparison of the noncovalent bond between arginine residues and each of the different phosphorylated residues. Dissociation curves were generated by plotting noncovalent complex ion intensities as a function of the nominal energy given to the noncovalent complex ion before entering the collision cell. These results showed that noncovalent complexes formed with phosphorylated tyrosine were the most stable, followed by serine and threonine, which had similar stability.  相似文献   

10.
Numerous protein–polyphenol interactions occur in biological and food domains particularly involving proline-rich proteins, which are representative of the intrinsically unstructured protein group (IUP). Noncovalent protein–ligand complexes are readily detected by electrospray ionization mass spectrometry (ESI-MS), which also gives access to ligand binding stoichiometry. Surprisingly, the study of interactions between polyphenolic molecules and proteins is still an area where ESI-MS has poorly benefited, whereas it has been extensively applied to the detection of noncovalent complexes. Electrospray ionization mass spectrometry has been applied to the detection and the characterization of the complexes formed between tannins and a human salivary proline-rich protein (PRP), namely IB5. The study of the complex stability was achieved by low-energy collision-induced dissociation (CID) measurements, which are commonly implemented using triple quadrupole, hybrid quadrupole time-of-flight, or ion trap instruments. Complexes composed of IB5 bound to a model polyphenol EgCG have been detected by ESI-MS and further analyzed by MS/MS. Mild ESI interface conditions allowed us to observe intact noncovalent PRP–tannin complexes with stoichiometries ranging from 1:1 to 1:5. Thus, ESI-MS shows its efficiency for (1) the study of PRP–tannin interactions, (2) the determination of stoichiometry, and (3) the study of complex stability. We were able to establish unambiguously both their stoichiometries and their overall subunit architecture via tandem mass spectrometry and solution disruption experiments. Our results prove that IB5·EgCG complexes are maintained intact in the gas phase.   相似文献   

11.
MALDI质谱检测蛋白质与富勒醇的非共价复合物   总被引:4,自引:0,他引:4  
基质辅助激光解吸电离(MALDI)质谱由于受到酸性基质、样品制备、激光诱导聚合和基质加合物的形成等条件的限制而难以用于非共价复合物的检测.本文以芥子酸为基质,观察到蛋白质与富勒醇的特殊相互作用,一些质谱特征,如质量数迁移、宽的加合峰和定量结合比表明,在蛋白质和富勒醇之间形成了特殊的非共价复合物.其中,血红蛋白与富勒醇的结合比是1:4,而肌红蛋白与富勒醇的结合比是1:1.实验结果表明:富勒醇可用来保护血红蛋白,有在酸性介质中防止其分解的作用.因此,通过在基质组份中添加特性有机化合物保护被测样品,有可能实现用MALDI质谱测定四级结构蛋白质的分子量.  相似文献   

12.
Approximately 300,000 compounds from selected libraries were screened against a subdomain of a hepatitis C viral (HCV) RNA using a high throughput flow injection mass spectrometry (FIA-MS) method with automated data storage and analysis. Samples contained 2 microM RNA target and 10 microM of each of up to ten ligands. Preliminary studies to optimize operational parameters used the binding of aminoglycosides to the A44 subdomain of bacterial RNA. Binding (confirmed by titration) and sensitivity were maximized within the constraints of the library and throughput. The mobile phase of 5 mM ammonium acetate in 50% isopropanol maintained the noncovalent complexes and provided good detection by electrospray mass spectrometry. Additionally, this composition maximized general solubility of the various classes of compounds including the oligonucleotide and organic library molecules. Cation adduction was insignificant in this screen although some solute and target dependent acetate adduction was observed. The ion trap mass spectrometer provided sufficient mass resolution to identify complexes of RNA with known components of the library. Converted mass spectral data (netCDF) were subjected to two types of statistical evaluation based on binding. The first algorithm identified noncovalent complexes that correlated with the molecular weights of the injected compounds. The second yielded the largest peak in the noncovalent complex region of the spectrum; this spectrum may or may not correlate with expected well components. Sixty-three compounds were confirmed to bind by more stringent secondary testing. Titrations, which were carried out with selected binding compounds, yielded a range of dissociation constants. Biological activity was observed for eleven confirmed binders.  相似文献   

13.
The recent development of electrospray ionization mass spectrometry (ESI-MS) has allowed its use to study molecular interactions driven by non-covalent forces. ESI-MS has been used to detect non-covalent complexes between proteins and metals, ligands and peptides and interactions involving DNA, RNA, oligonucleotides and drugs. Surprisingly, the study of the interaction between polyphenolic molecules and peptides/proteins is still an area where ESI-MS has not benefited. With regard to the important influence of these interactions in the biological and food domains, ESI-MS was applied to the detection and the characterization of soluble polyphenol-peptide complexes formed in model solution. The ability to observe and monitor the weak interactions involved in such macromolecular complexation phenomena was demonstrated for monomeric and dimeric flavonoid molecules (catechin-derived compounds) largely encountered in plants and plant derived products. Intact non-covalent polyphenol-peptide complexes were observed by ESI-MS using different experimental conditions. Utilizing mild ESI interface conditions allowed the detection of 1 : 1 polyphenol-peptide complexes in all tested solutions and 2 : 1 complexes for the dimers and galloylated polyphenols (flavanols). These results show that there is a preferential interaction between polymerized and/or galloylated polyphenols and peptide compared with that between monomeric polyphenols and peptides. Thus, ESI-MS shows potential for the study of small polyphenolic molecule-peptide interactions and determination of stoichiometry.  相似文献   

14.
Electrostatic interactions play an important role in the formation of noncovalent complexes. Our previous work has highlighted the role of certain amino acid residues, such as arginine, glutamate, aspartate, and phosphorylated/sulfated residues, in the formation of salt bridges resulting in noncovalent complexes between peptides. Tandem mass spectrometry (MS) studies of these complexes using collision-induced dissociation (CID) have provided information on their relative stability. However, product-ion spectra produced by CID have been unable to assign specifically the site of interaction for the complex. In this work, tandem MS experiments were conducted on noncovalent complexes using both electron capture dissociation (ECD) and electron-transfer dissociation (ETD). The resulting spectra were dominated by intramolecular fragments of the complex with the electrostatic interaction site intact. Based upon these data, we were able to assign the binding site for the peptides forming the noncovalent complex.  相似文献   

15.
We present a comprehensive study for determining the binding affinity of a protein-ligand complex, using mass spectrometric methods. Mass spectrometry has been used to study noncovalent interactions for a number of years. However, the use of soft ionization mass spectrometry for quantitative analysis of noncovalently bound complexes is not widely accepted. This paper reports a comparison of MS methods against established methods such as surface plasmon resonance (SPR) and circular dichroism (CD) whose suitability for the quantitative assessment of noncovalent interactions is well known. ESI titration and MALDI-SUPREX were used as representative mass spectrometric methods for this work. We chose to study the calmodulin-melittin complex that presents three challenges: (i) it exhibits a high affinity (low nanomolar KD); (ii) complexes are formed only in the presence of a coactivator, calcium ions in this case; and (iii) the protein and the complex show a different ionization efficiency. Dissociation constants were obtained from each method for the selected system and compared thoroughly to elucidate pros and cons of the selected methodologies in terms of their ability for the determination of binding constants of protein-ligand complexes. ESI titration, SPR, CD and MALDI-SUPREX yielded KD values in the low nanomolar range that are in general agreement with an older value reported in the literature. We also critically evaluated the limitations in particular of the MS methods and the associated data evaluation procedures. We present an improved evaluation of SUPREX data, as well as a detailed error analysis for all methods used.  相似文献   

16.
The disappearance of the hydrophobic effect in the gas phase due to the absence of an aqueous surrounding raises a long-standing question: can noncovalent complexes that are exclusively bound by hydrophobic interactions in solution be preserved in the gas phase? Some reports of successful detection by mass spectrometry of complexes largely stabilized by hydrophobic effect are questionable by the presence of electrostatic forces that hold them together in the gas phase. Here, we report on the MS-based analysis of model supramolecular complexes with a purely hydrophobic association in solution, β-cyclodextrin, and synthetic adamantyl-containing ligands with several binding sites. The stability of these complexes in the gas phase is investigated by quantum chemical methods (DFT-M06). Compared with the free interaction partners, the inclusion complex between β-cyclodextrin and adamantyl-containing ligand is shown to be stabilized in the gas phase by ΔG = 9.6 kcal mol–1. The host–guest association is mainly enthalpy-driven due to strong dispersion interactions caused by a large nonpolar interface and a high steric complementarity of the binding partners. Interference from other types of noncovalent binding forces is virtually absent. The complexes are successfully detected via electrospray ionization mass spectrometry, although a high dissociation yield is also observed. We attribute this pronounced dissociation of the complexes to the collisional activation of ions in the atmospheric interface of mass spectrometer. The comparison of several electrospray-based ionization methods reveals that cold spray ionization provides the softest ion generation conditions for these complexes.  相似文献   

17.
Noncovalent interactions between drugs and proteins play significant roles for drug metabolisms and drug discoveries. Mass spectrometry has been a commonly used method for studying noncovalent interactions. However, the harsh ionization process in electrospray ionization mass spectrometry (ESI‐MS) is not conducive to the preservation of noncovalent and unstable biomolecular complexes compared with the cold spray ionization mass spectrometry (CSI‐MS). A cold spray ionization providing a stable solvation‐ionization at low temperature is milder than ESI, which was more suitable for studying noncovalent drug‐protein complexes with exact stoichiometries. In this paper, we apply CSI‐MS to explore the interactions of ginsenosides toward amyloid‐β‐peptide (Aβ) and clarify the therapeutic effect of ginsenosides on Alzheimer's disease (AD) at the molecular level for the first time. The interactions of ginsenosides with Aβ were performed by CSI‐MS and ESI‐MS, respectively. The ginsenosides Rg1 bounded to Aβ at the stoichiometries of 1:1 to 5:1 could be characterized by CSI‐MS, while dehydration products are more readily available by ESI‐MS. The binding force depends on the number of glycosyls and the type of ginsenosides. The relative binding affinities were sorted in order as follows: Rg1 ≈ Re > Rd ≈ Rg2 > Rh2, protopanaxatriol by competition experiments, which were supported by molecular docking experiment. CSI‐MS is expected to be a more appropriate approach to determine the weak but specific interactions of proteins with other natural products especially polyhydroxy compounds.  相似文献   

18.
In this study, we demonstrate, using electrospray ionization mass spectrometry (ESI-MS) and collision-induced dissociation tandem mass spectrometry (ESI-MS/CID/MS), that stable noncovalent complexes can be formed between Fe(III)-heme and antimalarial agents, i.e., quinine, artemisinin, and the artemisinin derivatives, dihydroartemisinin, alpha- and beta-artemether, and beta-arteether. Differences in the binding behavior of the examined drugs with Fe(III)-heme and the stability of the drug-heme complexes are demonstrated. The results show that all tested antimalarial agents form a drug-heme complex with a 1:1 stoichiometry but that quinine also results in a second complex with the heme dimer. ESI-MS performed on mixtures of pairs of various antimalarial agents with heme indicate that quinine binds preferentially to Fe(III)-heme, while ESI-MS/CID/MS shows that the quinine-heme complex is nearly two times more stable than the complexes formed between heme and artemisinin or its derivatives. Moreover, it is found that dihydroartemisinin, the active metabolite of the artemisinin-type drugs in vivo, results in a Na(+)-containing heme-drug complex, which is as stable as the heme-quinine complex. The efficiency of drug-heme binding of artemisinin derivatives is generally lower and the decomposition under CID higher compared with quinine, but these parameters are within the same order of magnitude. These results suggest that the efficiency of antimalarial agents of the artemisinin-type to form noncovalent complexes with Fe(III)-heme is comparable with that of the traditional antimalarial agent, quinine. Our study illustrates that electrospray ionization mass spectrometry and collision-induced dissociation tandem mass spectrometry are suitable tools to probe noncovalent interactions between heme and antimalarial agents. The results obtained provide insights into the underlying molecular modes of action of the traditional antimalarial agent quinine and of the antimalarials of the artemisinin-type which are currently used to treat severe or multidrug-resistant malaria.  相似文献   

19.
The direct detection of an antibody-peptide complex is reported by matrix-assisted laser desorption ionization mass spectrometry (MALDI-MS). Experimental conditions have been found in which specific, noncovalent interactions in solution are maintained throughout the sample preparation and ionization process. Mass measurements based on the ion signals for the intact antibody and 1:1 antibody-peptide complex reveal that specific noncovalent associations between a monoclonal antibody and a peptide, which comprises the determinant of the corresponding antigen, are maintained in the gas phase. These results support the wider application of MALDI-MS to studies of the structure and specificity of macromolecular complexes important to immune and other biological function.  相似文献   

20.
This study describes a novel approach for monitoring noncovalent interactions in solution by electrospray mass spectrometry (ESI-MS). The technique is based on measurements of analyte diffusion in solution. Diffusion coefficients of a target macromolecule and a potential low molecular weight binding partner are determined by measuring the spread of an initially sharp boundary between two solutions of different concentration in a laminar flow tube (Taylor dispersion), as described in Rapid Commun. Mass Spectrom. 2002, 16, 1454-1462. In the absence of noncovalent interactions, the measured ESI-MS dispersion profiles are expected to show a gradual transition for the macromolecule and a steep transition for the low molecular weight compound. However, if the two analytes form a noncovalent complex in solution the dispersion profiles of the two species will be very similar, since the translational diffusion of the small compound is determined by the slow Brownian motion of the macromolecule. In contrast to conventional ESI-MS-based techniques for studying noncovalent complexes, this approach does not rely on the preservation of solution-phase interactions in the gas phase. On the contrary, "harsh" conditions at the ion source are required to disrupt any potential gas- phase interactions between the two species, such that their dispersion profiles can be monitored separately. The viability of this technique is demonstrated in studies on noncovalent heme-protein interactions in myoglobin. Tight noncovalent binding is observed in solutions of pH 10, both in the absence and in the presence of 30% acetonitrile. In contrast, a significant disruption of the noncovalent interactions is seen at an acetonitrile content of 50%. Under these conditions, the diffusion coefficient of heme in the presence of myoglobin is only slightly lower than that of heme in a protein-free solution. A breakdown of the noncovalent interactions is also observed in aqueous solution of pH 2.4, where myoglobin is known to adopt an acid-unfolded conformation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号